Analysis 3

1. Fouriertransformation

$$\widehat{x}(\omega) = \mathcal{F}\{x\}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)e^{-i\omega t}dt$$

$$x(t) = \mathcal{F}^{-1}\{\hat{x}\}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{x}(w) e^{i\omega t} dw$$

Original funktionBild funktion $\hat{x}(\omega) = \mathcal{F}\{x\}(\omega) =$ Definition 1 $Dualit\ddot{a}t$ $\hat{x}(t)$ $Linearit \ddot{a}t$ ax(t) + by(t) $a\hat{x}(\omega) + b\hat{y}(\omega)$ $(a, b \in \mathbb{C})$ Skalierung $\frac{1}{|a|}\hat{x}\left(\frac{\omega}{a}\right)$ x(at) $(a \in \mathbb{R} \setminus \{0\})$ Zeitverschie $e^{-i\omega t_0}\hat{x}(\omega)$ $x(t-t_0)$ bung $(t_0 \in \mathbb{R})$ Frequenzver $e^{i\omega_0 t}x(t)$ schiebung $\hat{x}(\omega - \omega_0)$ $(\omega_0 \in \mathbb{R})$ komplexe $\overline{x(t)}$ $\hat{x}(-\omega)$ Konjugation Ableitung im $i\omega\hat{x}(\omega)$ ZeitbereichAbleitung im $\frac{d\hat{x}}{d\omega}(\omega)$ -itx(t)Frequenzbereich Faltung im 9. $\sqrt{2\pi}\hat{x}(\omega)\hat{y}(\omega)$ Zeitbereich $(\hat{x} * \hat{y})(\omega) =$ $\int_{-\infty}^{\infty} \hat{x}(t)y(t) \int_{-\infty}^{\infty} \hat{x}(\omega')\hat{y}(\omega - \omega') d\omega'$ Faltung im Frequenz bereich

$$sinc(x) = \frac{\sin(\pi x)}{\pi x}$$

1.2. Wichtige Transformationen

Originalfunktion	Bildfunktion
x(t)	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)e^{-i\omega t} \mathrm{d}t$
$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{x}(\omega) e^{i\omega t} d\omega$	$\hat{x}(\omega)$
$\mathrm{rect}(t)$	$\frac{1}{\sqrt{2\pi}}\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$
$\delta(t)$	$rac{1}{\sqrt{2\pi}} \sqrt{2\pi} \delta(\omega)$
1	
$\operatorname{sgn}(t)$	$ \sqrt{\frac{2}{\pi}} \frac{1}{i\omega} $ $ \frac{1}{\sqrt{2\pi}} \frac{1}{i\omega} + \sqrt{\frac{\pi}{2}} \delta(\omega) $ $ \sqrt{2\pi} \delta(\omega - 1) $
$\sigma(t)$ e^{it}	$\frac{1}{\sqrt{2\pi}}\frac{1}{i\omega} + \sqrt{\frac{\pi}{2}}\delta(\omega)$
e^{it}	$\sqrt{2\pi}\delta(\omega-1)$

1.2.1. Rechteckfunktion

$$\mathcal{F}\{rect\}(\omega) = \frac{1}{\sqrt{2\pi}} \frac{\sin\left(\frac{\omega}{2}\right)}{\frac{\omega}{2}} = \frac{1}{\sqrt{2\pi}} \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$$

1.2.2. Dirac Distibution

$$\delta(t) = \delta(-t)$$

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

$$(x * \delta)(t) = \int_{-\infty}^{\infty} x(t')\delta(t - t')dt' = x(t)$$

1.3. Darstellung als Fourierreihe

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi}{T}kt\right) + B_k \sin\left(\frac{2\pi}{T}kt\right) \right)$$

$$a_k = \frac{2}{T} \int_{t_0}^{t_{0-T}} x(t) \cos\left(\frac{2\pi}{T}kt\right) dt$$

$$b_k = \frac{2}{T} \int_{t_0}^{t_{0-T}} x(t) \sin\left(\frac{2\pi}{T}kt\right) dt$$

2. Partielle Differenzialrechnung

2.1. Funktionen mehrer Variablen

$$Bild: im(f) \coloneqq f(D) = \{f(x) | x \in D\} \subseteq \mathbb{R}^m$$

Stetig hebbar = Punkt in Definitionslücke definiert und Definition macht Funktion stetig

Funktion stetig an einer Stelle x_0 wenn der Grenzwert an der Stelle x_0 existiert und dem Funktionswert enspricht.

2.2. Definitionen

2.2. Definitioner		
Bezeichnung	Bedingung	
f_i ist partiell	δf_i	
differenzierb	$rac{\delta f_i}{\delta x_i}$ existiert für alle j	
ar an Stelle <u>a</u>	$0x_j$	
f partiell	δf .	
differenzierb	$\frac{\delta f_i}{\delta x_i}$ existiert für alle i, j	
ar an Stelle <u>a</u>	δx_j	
f ist partiell	$\frac{\delta f_i}{\delta x_i}$ existiert für alle i, j,	
differenzierb	$\frac{1}{\delta x_j}$ existing if all alle i, j,	
ar	an jeder Stelle $\underline{x} \in D$	
	Es existiert eine lineare Abb.	
\underline{f} ist total	$\underline{L_a} \colon \mathbb{R}^n \to \mathbb{R}^m$, sodass	
differenzierb	$\lim_{x \to a} \left\ \underline{f(\underline{x})} - \underline{f(\underline{a})} - \underline{L_a}(\underline{x} - \underline{a}) \right\ _{\mathbb{R}^m}$	
ar		
	$\underline{x} \rightarrow \underline{a}$ $\ \underline{x} - \underline{a}\ _{\mathbb{R}^n}$	

 $\underline{L_a}$ ist das totale Differenzial oder die totale Ableitung der Funktion f an der Stelle \underline{a}

2.2.1. Satz 3

 \underline{f} total diff'bar $\Rightarrow \underline{f}$ stetig

 \underline{f} total diff'bar $\Rightarrow \underline{f}$ partiell diff'bar

f stetig partiell diff'bar

$$\Rightarrow \begin{cases} \underline{f} \ total \ diff'bar \\ \underline{L_a}(v) = \underline{\underline{Df}}(a)\underline{v}, \quad \underline{v} \in \mathbb{R}^n \end{cases}$$

Umkehrschlüsse nicht gültig!

Eine (total) differenzierbare Funktion lässt sich an jeder Stelle a \in D durch eine lineare Funktion approximieren:

Veralgemeinertes 1. Taylorpolynom:

$$T_1 f(x; a) := f(a) + Df(a)(x - a)$$

2.3. Differenzialoperatoren 1. Ordung

2.3.1. Jacobi-Matrix

$$\underline{\underline{Df}}(a) : \begin{pmatrix} \frac{\delta f_1}{\delta x_1} \underline{a} & \cdots & \frac{\delta f_1}{\delta x_n} \underline{a} \\ \vdots & \ddots & \vdots \\ \frac{\delta f_m}{\delta x_1} \underline{a} & \cdots & \frac{\delta f_m}{\delta x_n} \underline{a} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

2.3.2. Gradient

$$f \mapsto grad(f), \qquad grad\left(f(\underline{x})\right) = \begin{pmatrix} \frac{\delta f}{\delta x_1} \underline{x} \\ \vdots \\ \frac{\delta f}{\delta x_n} \underline{x} \end{pmatrix}$$

2.3.3. Richtungsableitung

<u>v</u>: Richtungsvektor

$$\underline{Dv}: \underline{f} \mapsto \underline{Dvf}$$
$$\underline{Dvf}: D \mapsto \mathbb{R}^m$$

Wichtig:

$$\underline{Dv}\underline{f}(\underline{x}) = \underline{\underline{Df}}(\underline{x})\underline{v}$$

d.h. Sehr leicht mit Jacobi-Matrix berechenbar!

2.3.4. Nabla-Operator

$$\nabla \coloneqq \begin{pmatrix} \frac{\delta}{\delta x_1} \\ \vdots \\ \frac{\delta}{\delta x_n} \end{pmatrix}$$

2.3.5. Divergenz

Sei m = n

$$div\left(\underline{f}(\underline{x})\right) := \sum_{i=1}^{n} \frac{\delta f_{i}}{\delta x_{i}} \underline{x} = tr\left(\underline{\underline{Df}}(\underline{x})\right) = \nabla \cdot \underline{f}$$

 \rightarrow Spur der Jacobi-Matrix mal \underline{x}

2.3.6. Rotation

$$\frac{\delta f_z}{\delta y}(x) - \frac{\delta f_y}{\delta z}(x)$$

$$rot\left(\underline{f}\right) \coloneqq \nabla \times \underline{f} = \left(\frac{\delta f_x}{\delta z}(x) - \frac{\delta f_z}{\delta x}(x)\right)$$

$$\frac{\delta f_y}{\delta x}(x) - \frac{\delta f_x}{\delta y}(x)$$

Operator	Schreibweise ohne ∇	Schreibweise mit ∇
Gradient	$\operatorname{grad} f$	∇f
Richtungsableitung $(m = 1, Skalarfeld)$	$D_{\boldsymbol{v}}f, \frac{\partial f}{\partial \boldsymbol{v}}$	$(\boldsymbol{v}\cdot\nabla)f$
Divergenz	$\operatorname{div} f$	$\mid abla \cdot f$
Rotation	$\operatorname{rot} f$	abla imes f

2.3.7. Anwendung: Fehlerfortpflanzung

x: Variable (kann Vektor sein)

y: Ergebnis der Funktion

f: Funktion

 Δx , Δy : Abweichungen (Grün muss gegeben sein

$$|\Delta y| \lesssim \sum_{j=1}^{n} \left| \frac{\delta f}{\delta x_j}(\mathbf{x}) \right| \left| \Delta x_j \right|$$

$$\left|\frac{\Delta y}{y}\right| \lesssim \sum_{j=1}^{n} \left|\frac{x_j}{y} \frac{\delta f}{\delta x_j}(x)\right| \left|\frac{\Delta x_j}{x_j}\right|$$

2.4. Differenzialoperatoren 2. Ordnung

2.4.1. Hesse-Matrix

$$\underline{\underline{Hf}}(x) = \begin{pmatrix} \frac{\delta^2 f}{\delta x_1^2} & \cdots & \frac{\delta^2 f}{\delta x_1 \delta x_n} \\ \vdots & \ddots & \vdots \\ \frac{\delta^2 f}{\delta x_n \delta x_1} & \cdots & \frac{\delta^2 f}{\delta x_n^2} \end{pmatrix} = \left(\underline{\underline{D}} \nabla f\right)^T$$

verallgemeinerte 2. Taylorpolynom:

$$T_2 f(x; a) \coloneqq f(a) + \nabla f(a)(x - a) + \frac{1}{2}(x - a)^T$$
$$+ H f(a)(x - a)$$

2.4.2. Skalarer Laplace

$$\Delta f(\underline{x}) \coloneqq div(grad(f)) \cdot \underline{x}$$

$$\nabla^2 = \Delta f = div(grad(f)) = tr\left(\underline{Hf}\right)$$

$$tr = Spur$$

2.5. Differentialoperationen höherer Ordnung

2.5.1. Satz von Schwarz

 \underline{f} ist p – mal stetig partiell differenzierbar \Longrightarrow Reihenfolge der partiellenAbleitungen mit Ordnung $k \le p$ ist unerheblich

- Hesse-Matrix einer 2x stetig partiell differenzierbaren Funktion ist symmetrisch
- Es müssen nicht mn^k k-te partielle Ableitungen berechnet werden, sondern nur $m\binom{n+k-1}{k}$ k-te partielle Ableitungen

2.6. Extremstellen

2.6.1. Minima/Maxima

Bedingung: $\nabla f(x) = 0$

Eigenwerte von $Hf(x_0)$ berechnen:

- Alle positiv: lokales Minimum
- Alle negativ: lokales Maximum
- Beides: Sattelpunkt

2.7. Rechenregeln

$$\nabla(fg) = f\nabla g + g\nabla f$$

$$div(f\underline{v}) = \nabla f \cdot \underline{v} + f div(\underline{v})$$

$$rot(f\underline{v}) = \nabla f \times \underline{v} + f \cdot rot(\underline{v})$$

2.7.1. Verallgemeinerte Kettenregel

$$\underline{\underline{D}}(\underline{f} \circ \underline{g})(\underline{x}) = \underline{\underline{Df}}(\underline{g}(\underline{x}))\underline{\underline{Dg}}(\underline{x})$$

$$f \circ g \coloneqq f\big(g(x)\big)$$

2.7.2. Spezialfälle

$$f: D_f \to \mathbb{R}, \qquad D_f \subseteq \mathbb{R}^3$$

$$v: D_v \to \mathbb{R}^3$$
, $D_v \subseteq \mathbb{R}^3$

f und v sind 2x stetig partiell diff bar, so gilt:

$$div(rot(\mathbf{v})) \equiv 0$$

$$rot\big(grad(f)\big)\equiv 0_3$$

2.8. Kurven und Flächer

2.8.1. Immersion

	einer Funktion	einer Funktion	einer Funktion
reguläre Kurve in der Ebene	$oldsymbol{\gamma}: \mathbb{R} ightarrow \mathbb{R}^2$	$f: \mathbb{R} \to \mathbb{R}$	$f: \mathbb{R}^2 \to \mathbb{R}$
Tangentialvektor	$\dot{\gamma} = \begin{pmatrix} \dot{\gamma}_1 \\ \dot{\gamma}_2 \end{pmatrix}$	$\begin{pmatrix} 1 \\ f' \end{pmatrix}$	$\begin{pmatrix} f_y \\ -f_x \end{pmatrix}$
Normalenvektor	$\begin{pmatrix} -\dot{\gamma}_2 \\ \dot{\gamma}_1 \end{pmatrix}$	$\begin{pmatrix} -f' \\ 1 \end{pmatrix}$	$\nabla f = \left(\begin{array}{c} f_x \\ f_y \end{array}\right)$
reguläre Kurve im Raum	$oldsymbol{\gamma}: \mathbb{R} ightarrow \mathbb{R}^3$	$oldsymbol{f}: \mathbb{R} ightarrow \mathbb{R}^2$	$oldsymbol{f}: \mathbb{R}^3 ightarrow \mathbb{R}^2$
Tangentialvektor	$\dot{\gamma} = \begin{pmatrix} \dot{\gamma}_1 \\ \dot{\gamma}_2 \\ \dot{\gamma}_3 \end{pmatrix}$	$ \begin{pmatrix} 1 \\ \mathbf{f}' \end{pmatrix} = \begin{pmatrix} 1 \\ f'_1 \\ f'_2 \end{pmatrix} $	$\nabla f_1 imes \nabla f_2$
Normalen- vektoren	$ \begin{pmatrix} -\dot{\gamma}_2 \\ \dot{\gamma}_1 \\ 0 \\ \text{falls } \dot{\gamma}_1 \neq 0 \end{pmatrix}, \begin{pmatrix} -\dot{\gamma}_3 \\ 0 \\ \dot{\gamma}_1 \end{pmatrix} $	$\left(\begin{array}{c} -f_1' \\ 1 \\ 0 \end{array}\right), \left(\begin{array}{c} -f_2' \\ 0 \\ 1 \end{array}\right)$	$\nabla f_1, \nabla f_2$
reguläre Fläche im Raum	$oldsymbol{arphi}: \mathbb{R}^2 ightarrow \mathbb{R}^3$	$f: \mathbb{R}^2 \to \mathbb{R}$	$f: \mathbb{R}^3 \to \mathbb{R}$
Tangential- vektoren	$oldsymbol{arphi}_x, oldsymbol{arphi}_y$	$\left(\begin{array}{c}1\\0\\f_x\end{array}\right),\left(\begin{array}{c}0\\1\\f_y\end{array}\right)$	$\begin{pmatrix} f_z \\ 0 \\ -f_x \\ \text{falls } f_z \neq 0 \end{pmatrix}, \begin{pmatrix} 0 \\ f_z \\ -f_y \end{pmatrix}$
Normalenvektor	$oldsymbol{arphi}_x imesoldsymbol{arphi}_y$	$\left(\begin{array}{c} -\nabla f \\ 1 \end{array}\right) = \left(\begin{array}{c} -f_x \\ -f_y \\ 1 \end{array}\right)$	$\nabla f = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix}$

Graph

2.8.2. Lagrange Muliplikator

 $mit\ f(x)\ und\ g(x) = c\ (Anfangsbedingungen)$

$$\nabla \mathcal{L}(x,\lambda) = (\frac{\nabla f(x) - Dg(x)^T \lambda}{c - g(x)}$$

Dieser Gradient muss an der Stelle (x_0, λ_0) verschwinden $(=0_{n+m})$.

3. Integralrechnung

3.1. Kurvenintegrale

$$\gamma$$
: $[a,b] \to \mathbb{R}^n$

$$\Gamma \coloneqq im(\gamma) \subseteq \mathbb{R}^n$$

Dann gilt:

Niveaumenge

$$\int_{\Gamma} f ds := \int_{a}^{b} f(\gamma(t)|\dot{\gamma}(t)|dt; ds = |\dot{\gamma}(t)|dt$$

$$\int_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \cdot d\boldsymbol{x} \coloneqq \int_{a}^{b} \boldsymbol{v}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) dt$$

 $\oint dA$ wird für geschlossene Kurven gebraucht

3.2. Anwendungen

3.2.1. Bogenlänge

Parametrisierung:
$$\gamma(t) = {t \choose f(t)}$$

$$|\Gamma| \equiv L(\Gamma) := \int_{\Gamma} 1 ds = \int_{a}^{b} |\dot{\gamma}(t)| dt$$
$$= \int_{a}^{b} \sqrt{1 + f'(t)^{2}} dt$$

3.2.2. Arbeit

$$W = \int_{\Gamma} \mathbf{F}(\mathbf{x}) \cdot d\mathbf{x} = \int_{a}^{b} \mathbf{F}(\mathbf{s}(t)) \cdot \dot{\mathbf{s}}(t) dt$$

Momentanleistung:

$$P(t) \coloneqq \mathbf{F}(\mathbf{s}(t)) \cdot \dot{\mathbf{s}}(t)$$

Mittlere Leistung

$$\bar{P} := \frac{1}{b-a} \int_{a}^{b} P(t)dt = \frac{W}{b-a}$$

3.3. Transformationssatz

Substitution auf mehrern Raumdimensionen

$$\int_{\omega(M)} f(B) d\mathbf{y} = \int_{M} f(\boldsymbol{\varphi}(\mathbf{x})) |\det(\boldsymbol{D}\boldsymbol{\varphi}(\mathbf{x}))| d\mathbf{x}$$

 $\mathsf{Mit}\, \mathsf{det}(\boldsymbol{D}\boldsymbol{\varphi}(\boldsymbol{x})) \neq 0$

3.4. Krummlinige Koordinaten

3.4.1. Polarkoordinaten

$$\binom{r}{\varphi} = x \mapsto y = \varphi(x) \coloneqq \binom{r\cos(\varphi)}{r\sin(\varphi)}$$

$$\underline{\boldsymbol{D}\boldsymbol{\varphi}}(\boldsymbol{x}) = \begin{pmatrix} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{pmatrix} \in \mathbb{R}^{2\times 2}$$

$$\det\left(\underline{\boldsymbol{D}\boldsymbol{\varphi}}(\boldsymbol{x})\right) = r$$

3.4.2. Zylinderkoordinaten

$$\begin{pmatrix} r \\ \varphi \\ z \end{pmatrix} = \mathbf{x} \mapsto \mathbf{y} = \boldsymbol{\varphi}(\mathbf{x}) \coloneqq \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \\ z \end{pmatrix}$$

$$\underline{\boldsymbol{D}\boldsymbol{\varphi}}(\boldsymbol{x}) = \begin{pmatrix} \cos\varphi & -r\sin\varphi & 0\\ \sin\varphi & r\cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{3\times3}, \quad \det\left(\underline{\boldsymbol{D}\boldsymbol{\varphi}}(\boldsymbol{x})\right) = r,$$

3.4.3. Kugelkoordinaten

$$\begin{pmatrix} r \\ \vartheta \\ \varphi \end{pmatrix} = \boldsymbol{x} \mapsto \boldsymbol{y} = \boldsymbol{\varphi}(\boldsymbol{x}) := \begin{pmatrix} r \sin \vartheta \cos \varphi \\ r \sin \vartheta \sin \varphi \\ r \cos \vartheta \end{pmatrix}$$

$$\underline{\boldsymbol{D}\boldsymbol{\varphi}}(\boldsymbol{x}) = \begin{pmatrix} \sin\vartheta\cos\varphi & r\cos\vartheta\cos\varphi & -r\sin\vartheta\sin\varphi \\ \sin\vartheta\sin\varphi & r\cos\vartheta\sin\varphi & r\sin\vartheta\cos\varphi \\ \cos\vartheta & -r\sin\vartheta & 0 \end{pmatrix}$$

$$\det \left(\underline{\boldsymbol{D} \boldsymbol{\varphi}}(\boldsymbol{x}) \right) \ = \ r^2 \sin \vartheta$$

3.5. Oberflächenintegrale

3.5.1. Skalarfelder

Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^3$ mit $S \subseteq D$

$$\int_{S} f \, d\sigma := \int_{M} f(\boldsymbol{\varphi}(\boldsymbol{u})) |\boldsymbol{\varphi}_{u}(\boldsymbol{u}) \times \boldsymbol{\varphi}_{v}(\boldsymbol{u})| \, d\boldsymbol{u}$$

$$d\sigma = |\boldsymbol{\varphi}_u(\boldsymbol{u}) \times \boldsymbol{\varphi}_v(\boldsymbol{u})| \, dv \, du$$

3.5.2. Vektorfelder

Sei $v: D \to \mathbb{R}^3, D \subseteq \mathbb{R}^3, S \subseteq D$

$$\int\limits_{S} \boldsymbol{v} \cdot \mathrm{d}\boldsymbol{\sigma} := \int\limits_{M} \boldsymbol{v}(\boldsymbol{\varphi}(\boldsymbol{u})) \cdot (\boldsymbol{\varphi}_{u}(\boldsymbol{u}) \times \boldsymbol{\varphi}_{v}(\boldsymbol{u})) \, \mathrm{d}\boldsymbol{u}$$

$$d\boldsymbol{\sigma} = (\boldsymbol{\varphi}_u(\boldsymbol{u}) \times \boldsymbol{\varphi}_v(\boldsymbol{u})) dv du$$

Fluss:

$$\Phi_S(\boldsymbol{v}) := \int\limits_S \boldsymbol{v} \cdot \mathrm{d} \boldsymbol{\sigma} \in \mathbb{R}$$

3.5.3. Tabellenform

Sisisi rabenemen		
Kurven-/Wegintegral	$\int f ds = \int f(\mathbf{r}_i(t)) \dot{\mathbf{r}}_i(t) dt$	$oldsymbol{\gamma}:[a,b] o \mathbb{R}^n$
1. Art (Skalarfelder)	$\int_{\Gamma} f \mathrm{d}s = \int_{a} f(\gamma(t)) \dot{\gamma}(t) \mathrm{d}t$	$\Gamma = \operatorname{im}(\boldsymbol{\gamma}) \subseteq \mathbb{R}^n$
Kurven-/Wegintegral	$\int \boldsymbol{v}(\boldsymbol{x}) \cdot \mathrm{d}\boldsymbol{x} = \int\limits_{-b}^{b} \boldsymbol{v}(\boldsymbol{\gamma}(t)) \cdot \dot{\boldsymbol{\gamma}}(t) \mathrm{d}t$	$f: D \to \mathbb{R}, \ \Gamma \subseteq D \subseteq \mathbb{R}^n$
2. Art (Vektorfelder)	$\int_{\Gamma} b(x) \cdot dx = \int_{a} b(\gamma(t)) \cdot \gamma(t) dt$	$v: D \to \mathbb{R}^n, \ \Gamma \subseteq D \subseteq \mathbb{R}^n$
(65), (66)	$= \int \boldsymbol{v} \cdot \boldsymbol{t} \mathrm{d}s$ $\Gamma \text{F-Hang Kurve: } \underline{\boldsymbol{h}} \text{bragin: } \boldsymbol{d}$ $C \text{Berechnung mittels}$	$t=rac{\dot{\gamma}}{ \dot{\gamma} }$
	□ 4 Entlang Kurve: h bragtnich	it bei
n-dimensionales	Berechnung mittels $\int f(x) dx$ Transformationssatz, Satz	$f:D\to\mathbb{R}$
Integral $(n \in \mathbb{N})$	$\int_{M} \int_{M} \int_{M$	$M\subseteq D\subseteq \mathbb{R}^n$
Oberflächenintegral	$\int f d\sigma = \int f(\boldsymbol{\varphi}(\boldsymbol{u})) \boldsymbol{\varphi}_{\boldsymbol{u}}(\boldsymbol{u}) \times \boldsymbol{\varphi}_{\boldsymbol{v}}(\boldsymbol{u}) d\boldsymbol{u}$	$\varphi: M \to \mathbb{R}^3, M \subseteq \mathbb{R}^2$
(Skalarfelder) (82)	s M	$S = \operatorname{im}(\boldsymbol{\varphi}) \subseteq \mathbb{R}^3$
Oberflächenintegral	$\int oldsymbol{v}\cdot\mathrm{d}oldsymbol{\sigma}=\int oldsymbol{v}(oldsymbol{arphi}(oldsymbol{u}))\cdot(oldsymbol{arphi}_u(oldsymbol{u}) imesoldsymbol{arphi}_v(oldsymbol{u}))\mathrm{d}oldsymbol{u}$	$f:D\to\mathbb{R},S\subseteq D\subseteq\mathbb{R}^3$
(Vektorfelder) (83)		$v: D \to \mathbb{R}^3, S \subseteq D \subseteq \mathbb{R}^3$
(auch: Fluss) (84)	$=\int\limits_{S}oldsymbol{v}\cdotoldsymbol{n}\mathrm{d}\sigma=\Phi_{S}(oldsymbol{v})S$ y durch S	$n = rac{oldsymbol{arphi}_u imes oldsymbol{arphi}_v}{ oldsymbol{arphi}_u imes oldsymbol{arphi}_v }$
Volumenintegral	$\int f \mathrm{d}V = \int f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$	$f: D \to \mathbb{R}, \ D \subseteq \mathbb{R}^3$
(3-dim. Integral) (87)	$D \qquad \qquad D$	J . Z . Zz, Z ⊆ Zz

3.6. Gaussscher Integralsatz

$$\int_{V} \operatorname{div} \boldsymbol{v} \, dV = \oint_{S} \boldsymbol{v} \cdot d\boldsymbol{\sigma} \quad \left(= \oint_{S} \boldsymbol{v} \cdot \boldsymbol{n} \, d\boldsymbol{\sigma} = \Phi_{S}(\boldsymbol{v}) \right)$$

v: Vektorfeld

 $V \subseteq D$: abgeschlossene Menge

S: geschlossene Fläche, Oberfläche von V

n: Normalvektorfeld auf S

3.6.1. Folgerungen

$$\int_{V} \nabla f \cdot \boldsymbol{v} + f \operatorname{div} \boldsymbol{v} \, dV = \oint_{S} f \boldsymbol{v} \cdot d\boldsymbol{\sigma}$$

$$\int_{V} \boldsymbol{w} \cdot \operatorname{rot} \boldsymbol{v} - \boldsymbol{v} \cdot \operatorname{rot} \boldsymbol{w} \, dV = \oint_{S} (\boldsymbol{v} \times \boldsymbol{w}) \cdot d\boldsymbol{\sigma}$$

$$\int_{V} f\Delta g + \nabla f \cdot \nabla g \, dV = \oint_{S} f \nabla g \cdot d\sigma$$

$$\int_{V} f \Delta g - g \Delta f \, dV = \oint_{S} (f \nabla g - g \nabla f) \cdot d\boldsymbol{\sigma}$$

3.7. Satz von Stokes

$$\left(\int_{S} (\operatorname{rot} \boldsymbol{v}) \cdot \boldsymbol{n} \, d\sigma = \right) \quad \int_{S} \operatorname{rot} \boldsymbol{v} \cdot d\boldsymbol{\sigma} = \oint_{\Gamma} \boldsymbol{v} \cdot d\boldsymbol{x} \quad \left(= \oint_{\Gamma} \boldsymbol{v} \cdot \boldsymbol{t} \, ds \right)$$

4. Gewöhnliche DGL

4.1. Lösungen

Eine Lösung einer gDGL erfüllt mit ihren Ableitungen an jeder Stelle die gDGL.

4.1.1. Allgemeine Lösung

DGL:
$$y^{(n)} = F(x, y, y', y'', ..., y^{(n-1)})$$

Die allgemeine Lösung enthält genau n unabhängige Parameter (Integrationskonstanten).

4.1.2. Spezielle Lösung

Den Parametern werden feste Werte zugewiesen.

4.1.3. Singuläre Lösung

Lässt sich nicht aus der allgemeinen Lösung gewinnen.

4.1.4. Lösungsschar

Die gDGL hat mehrere Lösungskurven (von den Parametern abhängig). Die Menge aller Lösungskurven ist die Lösungsschar.

4.2. Gew. DGL 1. Ordnung

4.2.1. Normiertes Richtungsfeld

$$v(x,y) \coloneqq \frac{1}{\sqrt{1 + f(x,y)^2}} \begin{pmatrix} 1 \\ f(x,y) \end{pmatrix}$$

4.2.2. Tangentialvektor an Lösungskurve

$$\gamma(x) \coloneqq \binom{x}{y(x)}$$

$$\dot{\gamma}(x) = \begin{pmatrix} 1 \\ y'(x) \end{pmatrix}$$

4.2.3. Separierbare gDGL

Eine separierbare gDGL kann folgendermassen geschrieben werden:

$$y' = f(x) \cdot g(y)$$

Wenn:

$$\Phi: D_{\Phi} \to \mathbb{R}, D_{\Phi} \subseteq \mathbb{R}^2$$

$$\nabla \Phi(x,y) = \begin{pmatrix} -f(x) \\ \frac{1}{g(y)} \end{pmatrix}$$

Dann gilt:

$$\nabla \Phi(x, y) \cdot \boldsymbol{v}(x, y) = 0$$

4.2.4. Trennung der Variablen

- 1. Bestimme Nullstellen von g, für jede Nullstelle y_0 ist die Funktion $y \equiv y_0$ eine Lösung der DGL. (singuläre Lösung) (singuläre Lösung)
- $2. \quad \frac{1}{g(x)}dy = f(x)dx$
- 3. $\int \frac{1}{g(y)} dy = \int f(x) dx$
- 4. Das Ergebnis nach y auflösen, Integrationskonstante nicht vergessen!

4.2.5. Homogene lineare DGL

$$y' + f(x)y = 0$$

Konstanter Koeffizient, wenn: f = const.

Lösung mit Trennung der Variablen.

4.2.6. Inhomogene lineare DGL

$$y' + f(x)y = g(x)$$

- 1. Bestimme eine Stammfkt F von f(x)
- 2. Löse $\int e^{F(x)}g(x)dx$
- 3. $y(x) = e^{-F(x)} \int e^{F(x)} g(x) dx$
- 4. Integrationskonstante!

4.2.7. Lineare gDGL mit konst. Koeffizienten

Allg. Lösung:
$$y(x) = Ce^{-ax} + y_p(x) = y_0 + y_p$$

Störfunktion $g(x)$	Lösungsansatz für $y_p(x)$
Polynomfunktion	$y_p(x) = c_0 + c_1 x + \dots + c_n x^n$
vom Grad $n \in \mathbb{N}_0$	Parameter: c_0, c_1, \ldots, c_n
Linearkombination von	$y_p(x) = c_1 \sin(\omega x) + c_2 \cos(\omega x)$
trigonometrischen Funktionen	$oder y_p(x) = c\sin(\omega x + \varphi)$
$g(x) = A\sin(\omega x) + B\cos(\omega x)$	Parameter: c_1, c_2 bzw. c, φ
Exponentialfunktion	$y_p(x) = \begin{cases} ce^{bx}, & b \neq -a \\ cxe^{bx}, & b = -a \end{cases}$
$g(x) = Ae^{bx}$	Parameter: c

- 1. Lösungsansatz wählen
- 2. $y'_n + ay_n = g(x) \ \forall x$
- 3. $y(x) = Ce^{-ax} + y_p(x)$

4.2.8. Substitution

Verwenden bei nichtlinearen oder nicht separierbaren DGL.

ursprüngliche gDgl	Substitution	transformierte gDgl
(für $y(x)$)	Rücksubstitution	(für $u(x)$)
y' = f(ax + by + c)	u := ax + by + c	u' = a + bf(u)
(separierbar für $b=0$)	$y = \frac{u - ax - c}{b}$	(separierbar)
$y' = f\left(\frac{y}{x}\right)$	$u := \frac{y}{x}$	$u' = \frac{1}{x} \left(f(u) - u \right)$
$y - J\left(\frac{-}{x}\right)$	y = xu	(separierbar)
$y' = f(x)y + g(x)y^{\alpha}, \ \alpha \in \mathbb{R}$	$u := y^{1-\alpha}$	$u' = (1 - \alpha) \left(f(x)u + g(x) \right)$
(linear für $\alpha \in \{0,1\})$	$y = u^{1/(1-\alpha)}$	(linear)
J. Bernoulli, 1655–1705		

4.2.9. Anfangswertprobleme

Zusätzlich zur DGL existiert eine Zusatzbedingung der Form: $y(x_0) = y_0$

- 1. Überprüfen, ob singuläre Lösung existiert.
- 2. DGL lösen oder in Tabelle nachschauen
- 3. y_0 in die allgemeine Lösung einsetzen
- 4. Nach C auflösen.

Art der gDgl	Lösungsformel für den Anfangspunkt (x_0, y_0)
separierbar	$\int_{0}^{1} \frac{1}{1} dx = \int_{0}^{1} f(t) dt$
y'=f(x)g(y)	$\int_{y_0}^{\infty} \frac{1}{g(u)} du = \int_{x_0}^{\infty} f(t) dt$
linear	$y(x) = e^{-(F(x) - F(x_0))} y_0 + e^{-F(x)} \int_{x_0}^x e^{F(t)} g(t) dt,$
y' + f(x)y = g(x)	F irgendeine Stammfunktion von f
linear mit konstantem Koeffizienten y' + ay = g(x)	$y(x) = e^{-a(x-x_0)}y_0 + e^{-ax} \int_{x_0}^x e^{at}g(t) dt$

4.3. Systeme von DGL

$$y' = \begin{pmatrix} y'_1 \\ y'_2 \\ \vdots \\ y'_{n-1} \\ y'_n \end{pmatrix} = \begin{pmatrix} f_1(x, y_1, y_2, \dots, y_{n-1}, y_n) \\ f_2(x, y_1, y_2, \dots, y_{n-1}, y_n) \\ \vdots \\ f_{n-1}(x, y_1, y_2, \dots, y_{n-1}, y_n) \\ f_n(x, y_1, y_2, \dots, y_{n-1}, y_n) \end{pmatrix} = f(x, y).$$

4.3.1. Autonom

Falls $y' = f(y) \rightarrow \text{kein } x$

4.3.2. Linear

Falls
$$\mathbf{y}' = \underline{\mathbf{A}}(x)\mathbf{y} + \mathbf{b}(x)$$

Mit $A(x) \in \mathbb{R}^{n \times n}$ und $b(x) \in \mathbb{R}^n$

4.3.3. Normiertes Richtungsfeld

$$v(x,y) \coloneqq \frac{1}{\sqrt{1+|f(x,y)|^2}} \left(\begin{array}{c} 1 \\ f(x,y) \end{array} \right)$$

4.4. Reduktion der Ordnung

Bei Gleichungen 2. Ordnung

4.4.1. Ohne y

$$y'' = f(x, y')$$

- 1. Variable definieren: z(x) = y'(x)
- 2. In DGL einfügen & z(x) berechnen
- 3. Berechnen: $y(x) = \int z(x)dx$

4.4.2. Ohne x

$$y'' = f(y, y')$$

1.
$$y'' = \frac{dy'}{dy}\frac{dy}{dx} = \frac{dy'}{dy}y' \rightarrow \frac{dy'}{dy} = \frac{f(y,y')}{y'}$$

2. w(y) = y'

3. Löse:
$$\frac{dw}{dy} = \frac{f(y,w)}{w}$$
 nach $w(y)$

4. Löse: y' = w(y) nach y

4.5. Homogene Lineare gDGL

Werden gelöst durch Finden der Fundamentalmatrix Φ .

$$\Phi(x) := (y_1(x) \quad \cdots \quad y_n(x)) \in \mathbb{R}^{n \times n}, \ x \in D$$

$$y(x) = \underline{\Phi}(x)C$$
, $x \in D, C \in \mathbb{R}^n$

Jede Fundamentalmatrix erfüllt:

$$\underline{\mathbf{\Phi}}' = \underline{\mathbf{A}}(x)\underline{\mathbf{\Phi}}$$

Linear unabhängig, wenn:

$$\det(\underline{\mathbf{\Phi}}) \neq 0$$

4.5.1. Beweisen, dass Fkt Basislösungen sind

1. Fundamentalmatrix erstellen:

$$\underline{\Phi}(\mathbf{x}) \coloneqq \begin{pmatrix} y_1(\mathbf{x}) & y_n(\mathbf{x}) \\ \vdots & \cdots & \vdots \\ y_1^{(n)}(\mathbf{x}) & y_n^{(n)}(\mathbf{x}) \end{pmatrix}$$

- 2. DGL als homogenes lineares System schreiben & A(x) bestimmen (4.3.2)
- 3. $\underline{\Phi}' = \underline{A}(x)\underline{\Phi}$ nachprüfen
- 4. Lineare Unabhängigkeit überprüfen mit $\det\left(\underline{\Phi}(x)\right)$

4.5.2. Potenzreihenansatz

Verwendet, wenn die Koeffizienten der linearen gDGL Polynomfunktionen in x sind.

4.5.3. Konstante Koeffizienten

Dann gilt:

$$\mathbf{\Phi}(x) \coloneqq e^{x\underline{A}} \in \mathbb{R}^{n \times n}$$