
MC1–Strickler Frederic & Janko Uehlinger

1. Memory from a Software POV

1.1. Memory object in C

• Data type Implies size, i.e. number of bytes in

memory

• Name Used to access the memory region

• Value Content/data stored in the memory region

• Address Location in memory where the variable

resides

• Scope Part of the source code in which the name

is visible (known)

• Lifetime When is the variable created (allocation

of memory) and when is it destroyed

(deallocation of memory)

Sizes of integer types depend on architecture and

compiler!

Only Rule: Int must be bigger than char

stdint.h needs different h-files for different

Platforms so the program can stay the same for

different archtitectures

Same sizes for all architectures / compilers

Size of pointers is platform dependent

1.2. Name and data type
Definition:

• Introduces name/data type and allocates

storage space

• Function body

Declaration:

• Introduces name/data type

• Does not allocate storage space

1.3. Structs
Order of elements may influence number of required
bytes in memory if elements have different size
The compiler or programmer can optimize storage

Large makes holes in storage because halfword

always uses addresses dividable by 4.

1.4. Header Files
Interface -> header file

• Only declarations -> NO definitions

• No other #include statements 1)

Implementation -> .c file

• Provides definitions of items that have been

declared in header file

1.5. Value
Content/data stored in the memory region

Content of variable is interpreted based on data type
E.g. casting: Bit representation stays the same,

interpretation changes

%: takes Value at Storage position and interprets it
dependent on the symbol that follows
%x int and output as unsigned Hex number
%d int and output as signed decimal number
%u int and output as unsigned decimal number

1.6. Address -> Memory Sections

In Code (color-coded):

1.7. Scope
Keep the scope as small as possible

Terms 'local variables' and 'automatic variables' are

used interchangeably

Visibility of names in source code

typedef struct {

} large_struct_t;

typedef strsuct {

} compact_struct_t;

• An arrangement between compiler/assembler
and programmer

• Not relevant for object code

Scope of automatic variables

• Automatic variables have local scope

• Begins at point of definition

• Ends at end of containing block
Scope of variables with static allocation

• Static variables within function
o Local scope

• Static variables outside functions
o Module wide scope
o Starting from point of definition

• Global variables
o Visible within whole source code

Use static to provide encapsulation

Make functions and global variables private !!!
Add qualifier static for all objects that are not in
header file

1.8. Lifetime

1.8.1. Automatic variables ex.

- Creation:

o Memory for a, b, c allocated on

stack, when foo() is entered

o Recursion: several instances exist

- Initialization

o a: no initialization!

o b: each time foo() is entered

o c: each time for block is entered

- Destruction: at the end of function, memory

is released (not deleted!)

1.8.2. Static variables ex.

- Creation

o Memory is allocated, when program

is loaded into memory

- Initialization

o Just before program starts

o t, v, x: initialized to specified value

o s, u, w: initialized to zero

- Destruction

o Memory released when program

terminates

1.8.3. Dynamic Memory ex.

- Creation

o By calling malloc()

o Use sizeof() operator

o Check return value of malloc()

→memory available?

- Initialization

o To be done by program

- Destruction

o By calling free()

o Responsibility of programmer

1.9. Selected Implications
Common coding error

• Returning a pointer to an automatic variable

Alternative

• Allocate memory in calling function

• Pass the address

Passing read-only data

• Make function parameter a pointer to const

• Shows that foo() is not supposed to change the
data

• Compiler enforces read-only

•
Use const Whenever Possible

2. Interfacing External Signals
Issues for ‘digital’ signals

• Voltage levels of input signals outside allowed
range

• Slow edges

• Spikes and glitches

• Noise on signal and/or supply

• Bouncing

• Transient oscillations (‘Einschwingen’)

2.1.1. Voltage level of GPIOs on STM32F4xx

• User defined through VDD

• CMOS voltage levels

• Most GPIOs are 5V tolerant
Ensure compatibility of logic levels

• Voltage levels of output and input stage have to
be compatible -> data sheets

• VOL/VOH of driver -> VIL/VIH of input stage

2.1.2. Schmitt-Trigger
because of noise so it doesn’t trigger on slight noise.

Hysteresis helps on noisy signals and on signals with

slow edges.

2.2. Potential Hardware issues
1. Avoid floating inputs (on unused pins)
Noise is a source of random power consumption by
making the buffer switch randomly Connect unused
pin to VSS/VDD on PCB or use pull-up/pull-down
2. Avoid use of pull-up if voltage on I/O pin exceeds
VDD
Causes cross-voltage domain leakage, e.g. when a
debugger probe driving 5V is connected
Voltage protection may cause leakage current if
VDD of STM32 is switched off
E.g. If the STM32 is switched off (VDD = 0V), but the
external circuit is still powered and provides a
voltage on the I/O pin. This may also occur in the
other direction, i.e. STM32 on, but external circuit
not supplied

2.3. Edge Detection
Change of IO state -> event (Falling/Rising)

Hardware edge detection through interrupts

Polling in software: Example on CT_BOARD

• Repeatedly read buttons and compare to last

value read

Read input only once and safe it to edit it multiple

times. Don’t read out input multiple times shortly

after one another and expect the same input

State of objects: Allocate memory on the stack and
pass by reference to a function

2.4. Debouncing
Switches and buttons are mechanical

• Preloaded spring

• Contacts bounce up to a few milliseconds
Key press: Every bounce is seen as input change

Hardware Debouncing: Often not available
Polling at low sample rates -> Read signal once

during bouncing

Disadvantages of polling at low sample rates

• Maximum sample rate defined by bouncing

• High jitter -> often unacceptable

• Long reaction times

• Potential missing of on/off sequences
Polling at higher frequency

• Problem: Every bounce detected

2.4.1. Option 1: Sliding window filter

• Filter for inputs

• Store last n samples in array

• Edge detected only when there
is a preliminary sequence of samples with same
values
Disadvantages

• Polling

• Length of window depends on uC frequency

2.4.2. Option 2: Debouncing timer
Block input after first occurrence for bouncing time

tB

• Flexible solution

• No dependency on clock frequency

• Doesn’t need processing power

• Works also using interrupts

• More complex

• (Software-) timer needed

3. Matrix Keyboards
Direct connection to GPIO input -> many GPIO ports

• One input port per switch

• n input ports for n switches

Connecting multiple switches

• Most efficient way for more than 5 switches

• Best layout: number of rows = number of
columns

3.1.1. Fast scanning algorithm

• Read in only two steps

• Not possible with each microcontroller
(Changing input / output)

3.1.2. Using interrupt to avoid polling
Detect key stroke

• All outputs are forced low (initialization)

• No key pressed -> all inputs read high

• Using interrupt to detect key stroke

• Key pressure will start scanning algorithm
Scanning algorithm

• Both algorithms possible

4. Power Management and Low Power App.

4.1. Characteristics of low-power systems

• Low dynamic/operating power
o Dominated by transistor switching current
o Processor, memory, clocking circuits, other

analog circuits on chip

• Low standby power
o Caused by leakage
o Circuits, clocking circuits, active peripherals,

analog systems, RAM retention power

• High energy efficiency
o Ratio between processing capability and power

consumption
o Balance between performance and power

usage

• Wakeup latency
o Delay before processor can resume operation

after sleep mode
o Can be critical for some applications

4.2. Power consumption basics
Power to switch capacitive load C:

𝑃𝑑𝑦𝑛 = 𝑉𝐷𝐷 ∗ 𝐼𝑑𝑦𝑛 = 𝑉𝐷𝐷
2 ∗ 𝐶 ∗ 𝑓𝑐𝑙𝑘

Switching power is

• Proportional to 𝑪, 𝒇𝒄𝒍𝒌

• Proportional to the square of 𝑽𝑫𝑫

4.2.1. Shrinking semiconductor process dim.
Increase performance

• Allows higher switching frequencies
Lower the supply voltage

• Reduces the dynamic power consumption

• 𝑃1.8 =
1.82

2.52
∗ 𝑃2.5 = 0.52 ∗ 𝑃2.5

Increase the power density

• I.e. the chip gets hot-spots
Increase leakage currents

Operate at low voltage to minimize dynamic power

𝑃𝑑𝑦𝑛 = 𝑉𝐷𝐷
2 ∗ 𝐶 ∗ 𝑓𝑐𝑙𝑘

4.3. Static power 𝑃𝑠𝑡𝑎𝑡
(1) Leakage of CMOS gates

• Subthreshold conduction

• Transistors have a small current even if they are

off

• Smaller process geometries have lower 𝑽𝑫𝑫 but

higher leakage currents

• Ballpark for leakage currents of a chip: micro-

Amperes (𝜇𝐴)

(2) Power consumed by non-CMOS components

E.g. on a typical microcontroller there are sense

amplifiers, voltage references, constant current

sources, voltage regulators that contribute to overall

static power.

𝑃𝑠𝑡𝑎𝑡 = 𝑉𝐷𝐷 ∗ 𝐼𝑠𝑡𝑎𝑡

Static power is:

• Proportional to 𝑽𝑫𝑫

• Independent of switching frequency

• The power you have even if no switching is going

on

4.4. Dynamic and static power consumption
Typical application: Active (run) and inactive phases

alternate

Energy per cycle

𝐸𝑑𝑦𝑛 = 𝑃𝑑𝑦𝑛 ∗ 𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝐸𝑠𝑡𝑎𝑡 = 𝑃𝑠𝑡𝑎𝑡 ∗ (𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑇𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒)

4.4.1. Units and Orders of Magnitude

Voltage V Volt 0.9V-5V

Current A Ampere Dyn: mA
Stat: 𝜇𝐴-mA

Power W Watt W=V*A
=J/s

Dyn: mW
Stat: 𝜇𝑊-mW

Energy J Joule J=w*s Dyn (1s): mJ
Stat (1s): 𝜇𝐽-mJ

the multi-meter measures the average consumption

because it is to slow to measure exact values.

4.5. Reducing energy demand
Reduce the area below the curve

4.6. STM32F4 Low Power Modes

Turn-off the CPU clock – CPU still powered

Peripherals powered and clocked

4.7. Entering Low Power Modes and Wakeup
Interrupt-driven system

• CPU completes task and enters sleep, stop or

standby mode

• Assembly instructions WFI and WFE suspend

execution until wakeup by interrupt request or

event

• At wakeup, CPU resumes execution ➔ quite

often by directly calling the associated ISR

4.7.1. Enter Sleep Stop Mode with WFI and WFE

4.7.2. System Control Register (SCR)

• Address: 0xE000ED10 (this is a register defined
by ARM and not by ST)

• SEVONPEND: Send Event on Pending bit only
relevant for WFE, not for WFI
o 0: Only enabled interrupts or events can

wakeup the processor
o 1: Enabled events and all interrupts, including

disabled interrupts, can wakeup the
processor

• SLEEPDEEP
o 0: Sleep mode
o 1: Deep sleep mode

• SLEEPONEXIT
o 0: Do not sleep when returning to Thread

mode.
o 1: Enter sleep, or deep sleep, on return from

an interrupt service routine.

4.7.3. Using WFE in polling loops

Without WFE, a polling loop consumes power and
results in lower energy efficiency
With WFE, power consumption by polling loop is
significantly reduced

• PRIMASK: Priority Mask Register in the NVIC

Enable/disable all interrupts

• SEVONPEND Send Event on Pending bit in
system control register (SCR)

• NVIC Nested Vectored Interrupt Controller
All interrupts enabled in the peripherals wakeup.
However, execution of ISR depends on configuration
in NVIC

Additionally, in case of WFE, the system will wake up
in case of an event in EXTI.

4.7.4. Wakeup Interrupt Controller (WIC)

• A standardized ARM peripheral

• WIC mirrors the Interrupt detection function
when Cortex‐M in low power mode

• Restore power and clock when binterrupt /
event detected

4.7.5. Sleep on exit

• Enter Wait-for-Interrupt (WFI) sleep mode when
exiting an exception handler

• System control register (SCR) -> SLEEPONEXIT bit

4.8. Sources for Wakeup
Wakeup examples in Sleep Mode

• CPU clock stopped

• Peripherals running
o They generate interrupts or events

• transmission of byte completed on UART

• timer expires

• analog watchdog triggers i.e. analog value is

outside programmed thresholds

• DMA transfer completed

• byte received on SPI

• edge on GPIO

4.8.1. Wakeup sources in Stop mode

• CPU and peripherals in low power mode ➔ i.e.
peripherals do not generate interrupts

• EXTI provides 23 sources for wakeup

• EXTI: External Interrupt Controller

4.9. Real Time Clock
Runs from independent 32kHz clock
Slow clock consumes low amount of power

Interrupt-driven system in stop

• Use RTC alarms for scheduled wake-ups

• Use wake-up counter for periodic wake-up

• Use GPIOs (through EXTI) to trigger wake-up
through external events

Alternatively, connect external RTC through
GPIO/EXTI for wake-up

4.10. Power Saving Techniques

4.10.1. Using low-power modes

• Keep the device as much as possible in low-
power modes

• Best power management approach
o Switching between different power modes
o Simultaneously taking into account the

application requirements
► power consumption
► wakeup sources/time
► peripherals

System clock

• Power/current consumption depends on
switching frequency

• Static power strongly depends on temperature
(offset of curves)

The dynamic energy required to complete a task with
a defined number of clock cycles is independent of
the clock frequency

𝐸𝑑𝑦𝑛 = 𝑃𝑑𝑦𝑛 ∗ 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑉𝐷𝐷
2 ∗ 𝐶 ∗ 𝑓𝑐𝑙𝑘 ∗

𝑁

𝑓𝑐𝑙𝑘
= 𝑉𝐷𝐷

2 ∗ 𝐶 ∗ 𝑁

High clock frequency allows to go to sleep earlier

Reduces Tactive

Individual choice of prescaler dividers can save
energy. Not all the parts require the same clock
frequencies

4.10.2. Reduce switching on pins
Chip pins typically have high supply voltage (3.3V)
and high capacitive load

𝐼𝑆𝑤 = 𝑉𝐷𝐷 ∗ 𝑓𝑆𝑤 ∗ 𝐶

Reduce switching on clock pins by using a PLL

(Phase Locked Loop

4.10.3. Disable unused peripherals
E.g. in RCC APB1 peripheral clock enable register
(RCC_APB1ENR)

I/O configuration

• Unused Pins Configure as analog inputs
o Schmitt trigger input disabled Zero

consumption for I/O pin

• Avoid pull-up and pull-down activation if not
used

• Output I/O speed frequency at lowest possible
value

• Disable clock output pins if not used

4.11. Power Debugging
Potential issues

• Floating I/O
o Highly variant, especially at low temperatures

or high humidity

• Unexpected current sinking/sourcing
o Voltage-level mismatch
o Powered off ICs
o LEDs

• Analog peripherals
o Constant current when enabled
o Often active at sleep

• Spurious wakeups
o Unexpected interrupts reduce time in low-

power modes
Typical static power consumption
Gradient indicates high static power consumption

Unexpected wakeups requiring different amounts of

energy

Unwanted periodic high energy drain

Dynamic Power ➔ Reduce processing power
consumption

4.12. Examples

5. Digital Sensors

5.1. MEMS Sensors
→Micro Electro Mechanical Systems

- Integrate mechanical & electronic parts in

single component

o Directly placed on PCB

- Digital output

o No ADC required

5.1.1. Advantages
- Small, miniaturized, highly integrated

- Low-cost, low power

5.1.2. Disadvantages
- Less accurate than bigger sensors

5.2. Connecting Sensors

5.2.1. SPI

5.2.2. I2C

5.2.3. UART

5.2.4. 1-Wire

5.3. Processing in MC

5.3.1. Calibration
Compensate for offsets by:

- Scaling: Linear transformation

- Conversion: conversion of units / data

format

5.3.2. Filtering
- Removing noise

5.4. Accessing Registers

5.4.1. Writing

5.4.2. Reading

6. DMA - Direct Memory Access
How do I transfer data between SPI and memory?
Polling or Interrupt

• Direct Memory Access (DMA) as an option to
reduce the load on the CPU

DMA functionality

• Provide high-speed data transfer between one or
more units

• No CPU action

• Keeps CPU resources free for other operations

• DMA is an additional bus master

• Direct memory access (DMA) used to provide
high-speed data transfers
o peripherals-to-memory
o memory-to-peripheral
o memory-to-memory (only DMA 2)

• DMA moves Data without any CPU interventions
o Keeps CPU resources free for other

operations

• DMA controller combines powerful dual AHB
master bus architecture with independent FIFO
to optimize the bandwidth of the system
o Based on a complex bus matrix architecture.

• The two DMA controllers have 16 streams in
total (8 for each controller)
o Each dedicated to managing memory access

requests from one or more peripherals.
o Each stream can have up to 8 channels

(requests) in total. And each has an arbiter for
handling the priority between DMA requests.

6.1. Peripheral-to-memory DIR = ‘00‘

• ‘Interrupt’ condition (request) on peripheral
triggers transfer

• Load data from peripheral into FIFO
o Source address defined by peripheral address

register (SxPAR)
o Byte, half-word or word depending on

configuration

• Store data to memory
o Immediately in direct mode, or otherwise if

programmed FIFO level reached
o Destination address defined by memory

address register (SxM0AR)
o Byte, half-word or word depending on

configuration

6.2. Memory-to-peripheral DIR = ‘01‘

• Transfer starts immediately after stream enable

• Pre-load data from memory into FIFO
o Source address defined by memory address

register (SxM0AR)
o Byte, half-word or word depending on

configuration

• Each time a peripheral request occurs, data from
FIFO is stored to peripheral
o Destination address defined by peripheral

address register (SxPAR)
o Byte, half-word or word depending on

configuration

• Reload of FIFO from memory

o Direct mode: Immediately after store
o Otherwise as soon as FIFO level is 10 below

programmed level

6.3. Memory-to-memory DIR = ‘10‘

• Transfer starts immediately after stream enable

• Load data from memory into FIFO
o Source address defined by peripheral address

register (SxPAR)
o Byte, half-word or word depending on

configuration

• When programmed FIFO level is reached, data is
stored to memory

o Destination address defined by memory
address register (SxM0AR)

o Byte, half-word or word depending on
configuration

Direct mode and circular mode are not allowed

6.4. Supported Transfers and Requests

DMA 1 Request Mapping

DMA 2 Request Mapping

Only 8 predefined requests can trigger an individual
stream

E.g. it is not possible to trigger Stream2 by ADC1

6.5. DMA Configuration
DMA stream x configuration register (DMA_SxCR)

• CHSEL[2:0] Channel selection 0-7

• MSIZE[1:0] Memory data size

• PSIZE[1:0] Peripheral data size
o 00: 8-bit / 01: 16-bit / 10: 32-bit

• MINC/PINC Memory/Peripheral increment mode
o 0: address pointer is fixed
o 1: address pointer is incremented after each

data transfer

• DIR[1:0] Data transfer direction
o 00: Peripheral-to-memory
o 01: Memory-to-peripheral
o 10: Memory-to-memory

• EN Stream enable

Pointer increment – MINC and PINC bits in SxCR

• Configure in SxCR whether source and/or
destination addresses need to be incremented

• Increment is done after transfer

• Value of increment depends on transfer size

1. Disable stream, i.e. reset EN bit in SxCR Read

SxCR until EN == 0 all transfers finished 1) Clear

interrupt status registers LISR and HISR

2. Set peripheral address register SxPAR

3. Set memory address register SxM0AR

4. Configure number of transfers in SxNDTR

5. Select DMA channel request in CHSEL[2:0] in

SxCR

6. Configure stream priority PL[1:0] in SxCR

7. Configure FIFO usage

8. Configure data transfer direction, data widths,

interrupts, increments and others in SxCR

9. Activate the stream by setting EN in SxCR

ST HAL: Using structs and functions

• Instantiate a handle

• Use handle to configure and start DMA

DMA FIFOs

• Each stream has an independent 4-word FIFO,

i.e. a total of 16 bytes

• Transfer sizes on source and destination can be

different

o byte vs. half-word vs. word

• Threshold levels can be programmed

• Direct mode does not use FIFO

6.5.1. DMA interrupts

• For each stream, an interrupt can be produced in
the following events registers LISR and HISR

• Transfer complete
o The programmed number of transfers has

been completed
o Tell the CPU to take back control

• Transfer error
o E.g. a bus error during a DMA access on the

bus

6.6. Arbitration
CPU and DMA1 both require the bus to SRAM1

• Several masters (including CPU and DMA1) can
request AHB bus in case they have data to
transfer

• An arbiter decides who gets the bus based on a
round-robin scheme (bus grant)

DMA internal arbiter

• Manages the 8 streams based on the
programmed priority

• Then, generates request to AHB bus

• Priority levels can be programmed per stream

6.6.1. Parallel transfers

Pipeline Transfer

6.7. Power savings with DMA
Sleep with DMA

• Put CPU into sleep

• Let DMA service “interrupts” from peripherals
o E.g. transfer data received on I2C to memory

• DMA issues an interrupt after programmed
number of transfers
o Wakes up the CPU

7. Timer Applications
Frequency of Digital Signals

Direct frequency counting
Count number of edges of an input signal over a
defined period of time (T)
ARR – Auto Reload Register defines measurement
period. Adapt measurement window (ARR)
depending on Timer 2 values

Reciprocal frequency counting

• Count periods of a fast reference clock

• Edges of input signal start and stop counter

• Objective: Measure fsignal on GPIO pin choose
fcounter >> fsignal

• Rising edge on GPIO pin captures value of
Counter and resets Counter

• CCR contains the number of internal clock pulses
during a period on the input pin

I.e., choose Reference clock much faster than Signal

to be measured

Advantages / disadvantages reciprocal counting

• More complex, higher hardware requirements
o ‘Floating point’ routines to calculate the

frequency

• Higher resolution
o Fixed in multiples of counter clock
o Independent of input signal frequency (as long

as fcounter >> fsignal)
Note: Accuracy depends on the clock stability of the

unit

7.1. Frequency Multiplication

• Use frequency multiplier to generate an output
with a higher frequency

• Measure frequency using timer 1
o Reciprocal frequency counting

• Generate output with timer 2
o Reload timer 2 with capture value of timer 1
o Timer 2 runs on higher frequency (fcounter_2)

7.2. Software Timers
Problem

• Applications often need multiple timing
elements

• A microcontroller only has a limited number of
HW-timers

• Implementing numerous timing elements with
individual HW-timers results in complex
interrupt structures

o Many interrupts
o Potential problems during run time
o Complex testing

Solution: Software timer

• A single hardware timer with a single interrupt
service routine (ISR)

• Timing elements implemented as software
timers

8. Structuring Embedded Software

8.1. Modularity

• Partition functionality into manageable chunks

• Hierarchical design

• Group together what belongs together

• Lean external interface

• Each module fulfills a single defined task

High cohesion

• Strength of relationship between functions and
data of a module

• Module functions and data shall have much in
common

Low coupling

• Minimize dependencies between modules
Avoid circular dependencies

• Lean interfaces

8.1.1. Encapsulation and Data Hiding

• Split interface from implementation (see also
previous lecture on definition vs. declaration)

• Do not disclose implementation details

• Maintain freedom to change implementation at
any time

8.1.2. Layering

• Hierarchical dependencies

• Each layer provides a specific service to the
upper layer

• Upper layer uses a service from the lower layer

8.1.3. Layering – Call-backs

• Inversion of control
o Lower layer calls function in higher level

• Specify function to be called as an argument, i.e.,
a function pointer

8.2. Passing Data from/to ISR

8.2.1. Global variable

• Code works fine with optimization level 0
o Number of executed interrupts is correctly

displayed on LED

• Then you crank up the optimization level of your
compiler

o LEDs always show a constant value

However, volatile does not prevent data consistency
issues of shared objects

8.2.2. Register a private variable

• Memory for counter is allocated in main program

• Address is passed as a parameter in init_irq()

• Module interrupt stores the parameter in a
private variable

static is a storage class specifier for the variable

being defined, here this is count_ptr. Therefore

count_ptr is only visible in module interrupt

volatile is a type qualifier for the type where

count_ptr points to.

8.2.3. Getter function (accessor)
Provides encapsulation

Advantage: Access through single channel

• Avoids accesses by mistake e.g. by confusing
variable names

• Easier debugging
o Allows setting a breakpoint or adding a logging

function1)
o Find out from which module an access takes

place

• Setter: Allows implementing a validation of input
parameters, e.g., a range check, at a single
location

o As opposed to duplicating your range checks all
over your code

• Make access atomic: Possibility to turn-off/on
interrupts in central place

8.2.4. Register a call-back
ISR calls a function in main module
handler() can be changed without modification of

module interrupt

8.2.5. Queue

• main() instantiates queue and passes the pointer
to module interrupt

• Module interrupt enqueues data; main()
dequeues data

• Synchronization needs to be solved in module
queue

8.3. ISR Data Consistency Issues
Interrupts may occur at any time during execution

• Between any two assembly instructions

• Within a C-statement
Interrupt service routines (ISR)

• Have to be treated as parallel threads1)
o I.e., as a sequence of instructions that can run

in parallel to the main program flow

• Require synchronization to the main program
Data consistency needs special attention

• Verification of interrupt service routines is
challenging

• Timing constraints

• Priorities
Keep ISRs brief use as few parallel interrupts as

required

Problem may prove difficult to reproduce / debug

• Chances are it only occurs every few hours or
even every few days

• Before you fix the problem, you should
reproduce it
o In a reliable and (if possible) automated way

• What can you do to reproduce it?
o You do not want to spend hours looking at

the displays
Critical section

• A piece of a program that may not be
interrupted

• Access to the shared resource needs to be
protected

• ISR may not update count as long as main is
reading it

• Reading count should be an atomic operation
o I.e. the operation may not be interrupted

Possible fix: Disable interrupts when copying

• Drawback: Increases interrupt latency

Use disabling and re-enabling interrupts with
caution

• If you use it too generously funny things can

happen

Call-backs don't make shared objects go away

• ISR does not even access the variable count

• But the callback may still have a data consistency
problem

9. Partitioning reactive systems
Reactive System: An embedded system reacting to

external, asynchronous events. The events can occur

in parallel.

9.1. Cooperating FSMs
Port

• Defines the messages that can be sent and
received by an FSM

• Output message action of the FSM

• Input message event of the FSM
Link

• Defines a connection for sending messages

The actions of FSM A and of FSM B both become
events for FSM C

FSM with event queue

• Collect events generated by different FSMs /
objects

• Buffered in event queue (FIFO)
o Avoids losing events
o Decouples event generation and processing

of events

• FSM processes one event after the other

• Events are deleted after processing

9.2. IMPLEMENTING QUEUES

• FIFO – First In, First Out

• Implemented as ring buffer / circular buffer
avoids copying data

• Tail – indicates where the next element shall be
inserted (write)

• Head – indicates the element that is next in line
(read)

9.2.1. The data structure of a Queue

9.2.2. Methods of a Queue
void queue_init(queue_t *queue)

→initialize queue before first use

uint32_t queue_enqueue(queue_t *queue, uint32_t

data)

→enqueues data at tail of queue

uint32_t queue_dequeue(queue_t *queue)

→removes element at head & moves the head tot

he next element.

9.3. Code Structure of an FSM

9.3.1. FSM interface
Other tasks put events into an event queue. The

scheduler periodically calls a handle_event function

of the FSM, which reacts to the next event in the

queue.

9.3.2. Implementation

9.4. COOPERATIVE SCHEDULER
Scheduler calls handle_event() functions

10. RTOS

• Scheduling of threads
o Predictable and deterministic: Execute within

time bounds
o Fair access to resources
o Provide time reference

• Communication
o Exchange of events and data between threads

• Synchronization
o Signaling
o Critical sections, mutual exclusion, semaphores

Thread of execution: An independent flow of control

that can be scheduled individually

10.1. Scheduler
Loads and dispatches threads to processor

• Threads get their share of execution time until

o They block on (wait for) some I/O

o Sleep deliberately/wait on some event

o A higher priority thread wants to run

o Used up their maximum time slice

• Then put into wait-queue until it’s their turn

again

• Scheduling algorithm

o Various choices

o None is “perfect”

o Challenge is that no thread is starving, i.e., not

executed due to other threads consuming all

the slots

10.2. RTOS – Concepts

10.2.1. Cooperative scheduler
Picks thread and lets it run

• Until it blocks either on I/O or waiting for

another process

• Or until it voluntarily releases the CPU

Threads will not be forcibly suspended

10.2.2. Preemptive scheduler
In addition, a preemptive scheduler

• May preempt the execution of a thread in favor

of another thread

• E.g., the running thread is suspended for a

thread with higher priority

• E.g., after it used up its time slice, the running

thread is suspended for another thread of same

priority

10.2.3. Context switch
Saves the context of the preempted thread

10.2.4. Hard vs. soft real-time

10.3. Thread Management
RUNNING Currently running thread Only one thread
at a time
READY Ready to run
WAITING Waiting for an event to occur
INACTIVE Not created or terminated

Priority-based preemptive scheduler
At each systick, the active thread with the highest
priority becomes the RUNNING thread provided it
does not wait for any event.

10.3.1. CMSIS_RTOS RTX configuration
Without “Round-Robin Thread switching”

• A thread will only be pre-empted by a thread
with a higher priority

• Among threads with equal priority: Control will
only be passed to another thread if the thread in
control yields or goes waiting

With “Round-Robin Thread switching”

• Threads with equal priority are pre-empted in
round-robin scheme

• Round-robin Timeout [ticks] Specifies the
number of ticks a thread is allowed to run before
the round-robin preempts

10.4. Inter-thread Communication

10.4.1. Event types
Support communication between multiple threads

and/or ISR

Signal is a flag that may be used to indicate specific
conditions to a thread. Signals can be modified in an
ISR or set from other threads.
Message is a 32-bit value that can be sent to a
thread or an ISR. Messages are buffered in a queue.
The message type and queue size is defined in a
descriptor.
Mail 1) is a fixed-size memory block that can be sent
to a thread or an ISR. Mails are buffered in a queue
and memory allocation is provided. The mail type
and queue size is defined in a descriptor.

10.4.2. Signal events

• Trigger execution between threads

• Functions to control or wait for signal flags
ISRs can call osSignalSet() but ISRs cannot call

osSignalClear() or osSignalWait()

10.4.3. Message queue

• One thread sends data explicitly, while another
thread receives it

• FIFO-like operation

• Functions to control, send, receive, or wait for
messages

10.5. Resource sharing
Mutex - mutual exclusion

• Protects access to shared resources
o Use resource only by one thread at a time
o E.g communication channels, memory, files

• Mutex is passed between threads
o Threads can acquire and release mutex

10.6. Generic Wait Functions

10.6.1. Add a time delay
osStatus osDelay(uint32_t millisec);

Thread goes into state WAITING and waits for a
specified
time period in millisec.

10.6.2. Wait for unspecified events
osEvent osWait(uint32_t millisec);

The osWait function puts a thread into the state
WAITING
for at most the time period specified in millisec and
waits for any of the following events:

• A signal sent to that thread explicitly

• A message from a message object that is
registered to that thread

10.7. Timer Management
Create and control timer and timer callback
functions

• Timer objects can trigger the execution of a
function (not threads)

• When timer expires, a callback function is
executed to run associated code

Combining threads and ISRs

• Applying priority levels

10.8. Thread Management Revisited
Prioritizing ISRs and threads

• Interrupt handlers (ISR) signal the threads when
an interrupt occurs

• Processing is done in Threads not in ISRs

• Thread priority level defines which thread gets
scheduled by the kernel

11. Structuring Embedded Software – Part 2
Possible approaches for embedded software

• Many real-life programs apply combinations of

the presented approaches image source:

colourbox

• Which approach is best suited depends on the

application at hand

• No general rule that one approach is superior to

the other

11.1. Bare metal
Running the embedded software directly on

hardware as opposed to running it on top of an

Operating System (OS)

11.1.1. Polling – Round Robin
After a certain period of time has passed, the thread

gets switched to the next one

11.1.2. Fully interrupt driven

11.1.3. ISR flags

11.1.4. ISR pass data through queues

11.1.5. Co-operative Scheduler

11.2. Firmware bridge SPI slave and UART
Continuous streams with same nominal bitrate but
subject to clock tolerances

• CPU calls conversion functions on each byte

Discuss potential firmware approaches

• Identify challenges

• Which missing information may influence your
decision?

11.3. Shared Memory
Sharing objects may create consistency issues

• Working concurrently requires special measures

Recognizing shared objects
-> finding potential programming errors

Properties

• Asynchronous
o No predictable time relationship among

instruction sequences
o E.g., main program and interrupt service

routine
o E.g., multi-threaded programs

• Access to shared memory requires coordination
o Risk of data corruption requires protection

measures

• Challenges
o Identification of shared memory find

unintentional, hidden cases
o Minimize use of shared memory to necessary

cases
When two or more asynchronous instruction
sequences (threads) access the same data,
that data is called shared memory.

11.3.1. Recognizing Shared Objects

• Important: How an object is used

• Scope or allocation method do not allow
conclusions

• Three possible mechanisms for shared objects
o Shared global data
o Shared private data
o Shared functions

Try to minimize shared data

• Reduces risk of data corruption issues

• Reduces complexity of the software
Apply careful design to protect unavoidable shared

objects

Read-only data

• E.g., a table of constants

• If shared data is read but never written no data
corruption can occur

• However, as a program evolves the requirements
might change

• Risk that a program modification changes the
code to read-write

o E.g., hard-coded data could be loaded from a
file in a later version

o Use a comment in your source code that the
read-only table is shared

11.3.2. Data Consistency Issues
Call-backs don't make shared objects go away

• ISR does not even access the variable count

• But the callback may still have a data consistency
problem

11.4. Mutex
Ensures that only one thread at a time can access a

resource, like communication channels, memory or

files. Threads can acquire and release a mutex. While

one thread has acquired it, the others can’t access

until it is released.

