
MC1–Strickler Frederic & Janko Uehlinger 

1. Memory from a Software POV 

1.1. Memory object in C 

 

 

• Data type Implies size, i.e. number of bytes in 

memory 

• Name Used to access the memory region 

• Value Content/data stored in the memory region 

• Address Location in memory where the variable 

resides 

• Scope Part of the source code in which the name 

is visible (known) 

• Lifetime When is the variable created (allocation 

of memory) and when is it destroyed 

(deallocation of memory) 

Sizes of integer types depend on architecture and 

compiler! 

Only Rule: Int must be bigger than char 

stdint.h needs different h-files for different 

Platforms so the program can stay the same for 

different archtitectures 

Same sizes for all architectures / compilers 

Size of pointers is platform dependent 

1.2. Name and data type 
Definition:  

• Introduces name/data type and allocates 

storage space 

• Function body 

Declaration: 

• Introduces name/data type 

• Does not allocate storage space 

1.3. Structs 
Order of elements may influence number of required 
bytes in memory if elements have different size 
The compiler or programmer can optimize storage 

 
Large makes holes in storage because halfword 

always uses addresses dividable by 4.  

 

1.4. Header Files 
Interface -> header file 

• Only declarations -> NO definitions 

• No other #include statements 1) 

Implementation -> .c file 

• Provides definitions of items that have been 

declared in header file 

1.5. Value 
Content/data stored in the memory region 

Content of variable is interpreted based on data type 
E.g. casting: Bit representation stays the same, 

interpretation changes 

%: takes Value at Storage position and interprets it 
dependent on the symbol that follows 
%x int and output as unsigned Hex number 
%d int and output as signed decimal number 
%u int and output as unsigned decimal number 

1.6. Address -> Memory Sections 

 

In Code (color-coded): 

 

1.7. Scope 
Keep the scope as small as possible 

Terms 'local variables' and 'automatic variables' are 

used interchangeably 

Visibility of names in source code 

typedef struct { 

} large_struct_t; 

typedef strsuct { 

} compact_struct_t; 



• An arrangement between compiler/assembler 
and programmer 

• Not relevant for object code 

 

Scope of automatic variables 

• Automatic variables have local scope 

• Begins at point of definition 

• Ends at end of containing block 
Scope of variables with static allocation 

• Static variables within function 
o Local scope 

• Static variables outside functions 
o Module wide scope 
o Starting from point of definition 

• Global variables 
o Visible within whole source code 

Use static to provide encapsulation 

Make functions and global variables private !!! 
Add qualifier static for all objects that are not in 
header file 

1.8. Lifetime 

 

 

1.8.1. Automatic variables ex. 

 

- Creation: 

o Memory for a, b, c allocated on 

stack, when foo() is entered 

o Recursion: several instances exist 

- Initialization 

o a: no initialization! 

o b: each time foo() is entered 

o c: each time for block is entered 

- Destruction: at the end of function, memory 

is released (not deleted!) 

1.8.2. Static variables ex. 

 

- Creation 

o Memory is allocated, when program 

is loaded into memory 

- Initialization 

o Just before program starts 

o t, v, x: initialized to specified value 

o s, u, w: initialized to zero 

- Destruction 

o Memory released when program 

terminates 

1.8.3. Dynamic Memory ex. 

 

- Creation 

o By calling malloc() 

o Use sizeof() operator 

o Check return value of malloc() 

→memory available? 

- Initialization 

o To be done by program 

- Destruction 

o By calling free() 

o Responsibility of programmer 

1.9. Selected Implications 
Common coding error 

• Returning a pointer to an automatic variable 

Alternative 

• Allocate memory in calling function 

• Pass the address 

Passing read-only data 

• Make function parameter a pointer to const 

• Shows that foo() is not supposed to change the 
data 

• Compiler enforces read-only 

•  
Use const Whenever Possible 

2. Interfacing External Signals 
Issues for ‘digital’ signals 

• Voltage levels of input signals outside allowed 
range 

• Slow edges 

• Spikes and glitches 

• Noise on signal and/or supply 



• Bouncing 

• Transient oscillations (‘Einschwingen’) 

2.1.1. Voltage level of GPIOs on STM32F4xx 

• User defined through VDD 

• CMOS voltage levels 

• Most GPIOs are 5V tolerant 
Ensure compatibility of logic levels 

• Voltage levels of output and input stage have to 
be compatible -> data sheets 

• VOL/VOH of driver -> VIL/VIH of input stage 

2.1.2. Schmitt-Trigger 
because of noise so it doesn’t trigger on slight noise. 

Hysteresis helps on noisy signals and on signals with 

slow edges. 

2.2. Potential Hardware issues 
1. Avoid floating inputs (on unused pins) 
Noise is a source of random power consumption by 
making the buffer switch randomly Connect unused 
pin to VSS/VDD on PCB or use pull-up/pull-down 
2. Avoid use of pull-up if voltage on I/O pin exceeds 
VDD 
Causes cross-voltage domain leakage, e.g. when a 
debugger probe driving 5V is connected 
Voltage protection may cause leakage current if 
VDD of STM32 is switched off 
E.g. If the STM32 is switched off (VDD = 0V), but the 
external circuit is still powered and provides a 
voltage on the I/O pin. This may also occur in the 
other direction, i.e. STM32 on, but external circuit 
not supplied 

2.3. Edge Detection 
Change of IO state -> event (Falling/Rising) 

Hardware edge detection through interrupts 

Polling in software: Example on CT_BOARD 

• Repeatedly read buttons and compare to last 

value read 

Read input only once and safe it to edit it multiple 

times. Don’t read out input multiple times shortly 

after one another and expect the same input 

State of objects: Allocate memory on the stack and 
pass by reference to a function 

2.4. Debouncing 
Switches and buttons are mechanical 

• Preloaded spring 

• Contacts bounce up to a few milliseconds 
Key press: Every bounce is seen as input change 

Hardware Debouncing: Often not available 
Polling at low sample rates -> Read signal once 

during bouncing 

Disadvantages of polling at low sample rates 

• Maximum sample rate defined by bouncing 

• High jitter -> often unacceptable 

• Long reaction times 

• Potential missing of on/off sequences 
Polling at higher frequency 

• Problem: Every bounce detected 

2.4.1. Option 1: Sliding window filter 

• Filter for inputs 

• Store last n samples in array 

• Edge detected only when there 
is a preliminary sequence of samples with same 
values 
Disadvantages 

• Polling 

• Length of window depends on uC frequency 

2.4.2. Option 2: Debouncing timer 
Block input after first occurrence for bouncing time 

tB 

• Flexible solution 

• No dependency on clock frequency 

• Doesn’t need processing power 

• Works also using interrupts 

• More complex 

• (Software-) timer needed 
 

3. Matrix Keyboards 
Direct connection to GPIO input -> many GPIO ports 

• One input port per switch 

• n input ports for n switches 
 
Connecting multiple switches 

• Most efficient way for more than 5 switches 

• Best layout: number of rows = number of 
columns 

 
3.1.1. Fast scanning algorithm 

• Read in only two steps 

• Not possible with each microcontroller 
(Changing input / output) 

 



 

3.1.2. Using interrupt to avoid polling 
Detect key stroke 

• All outputs are forced low (initialization) 

• No key pressed -> all inputs read high 

• Using interrupt to detect key stroke 

• Key pressure will start scanning algorithm 
Scanning algorithm 

• Both algorithms possible 

 

4. Power Management and Low Power App. 

4.1. Characteristics of low-power systems 

• Low dynamic/operating power 
o Dominated by transistor switching current 
o Processor, memory, clocking circuits, other 

analog circuits on chip 

• Low standby power 
o Caused by leakage 
o Circuits, clocking circuits, active peripherals, 

analog systems, RAM retention power 

• High energy efficiency 
o Ratio between processing capability and power 

consumption 
o Balance between performance and power 

usage 

• Wakeup latency 
o Delay before processor can resume operation 

after sleep mode 
o Can be critical for some applications 

4.2. Power consumption basics 
Power to switch capacitive load C:  

𝑃𝑑𝑦𝑛 = 𝑉𝐷𝐷 ∗ 𝐼𝑑𝑦𝑛 = 𝑉𝐷𝐷
2 ∗ 𝐶 ∗ 𝑓𝑐𝑙𝑘 

Switching power is 

• Proportional to 𝑪, 𝒇𝒄𝒍𝒌 

• Proportional to the square of 𝑽𝑫𝑫 

4.2.1. Shrinking semiconductor process dim. 
Increase performance 

• Allows higher switching frequencies 
Lower the supply voltage 

• Reduces the dynamic power consumption 

• 𝑃1.8 =
1.82

2.52
∗ 𝑃2.5 = 0.52 ∗ 𝑃2.5 

Increase the power density 

• I.e. the chip gets hot-spots 
Increase leakage currents 

Operate at low voltage to minimize dynamic power 

𝑃𝑑𝑦𝑛 = 𝑉𝐷𝐷
2 ∗ 𝐶 ∗ 𝑓𝑐𝑙𝑘 

4.3. Static power 𝑃𝑠𝑡𝑎𝑡 
(1) Leakage of CMOS gates 

• Subthreshold conduction 

• Transistors have a small current even if they are 

off 

• Smaller process geometries have lower 𝑽𝑫𝑫 but 

higher leakage currents 

• Ballpark for leakage currents of a chip: micro-

Amperes (𝜇𝐴) 

(2) Power consumed by non-CMOS components 

E.g. on a typical microcontroller there are sense 

amplifiers, voltage references, constant current 

sources, voltage regulators that contribute to overall 

static power. 

𝑃𝑠𝑡𝑎𝑡 = 𝑉𝐷𝐷 ∗ 𝐼𝑠𝑡𝑎𝑡 

Static power is: 

• Proportional to 𝑽𝑫𝑫 

• Independent of switching frequency 

• The power you have even if no switching is going 

on 

4.4. Dynamic and static power consumption 
Typical application: Active (run) and inactive phases 

alternate 

 

Energy per cycle 

𝐸𝑑𝑦𝑛 = 𝑃𝑑𝑦𝑛 ∗ 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 

𝐸𝑠𝑡𝑎𝑡 = 𝑃𝑠𝑡𝑎𝑡 ∗ (𝑇𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑇𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒) 

4.4.1. Units and Orders of Magnitude 

Voltage V Volt  0.9V-5V 

Current A Ampere  Dyn: mA 
Stat: 𝜇𝐴-mA 

Power W Watt W=V*A 
=J/s 

Dyn: mW 
Stat: 𝜇𝑊-mW 

Energy J Joule J=w*s Dyn (1s): mJ 
Stat (1s): 𝜇𝐽-mJ 

the multi-meter measures the average consumption 

because it is to slow to measure exact values.  

 

 

 

 

 



4.5. Reducing energy demand 
Reduce the area below the curve 

 

4.6. STM32F4 Low Power Modes 

 

Turn-off the CPU clock – CPU still powered 

Peripherals powered and clocked 

4.7. Entering Low Power Modes and Wakeup 
Interrupt-driven system 

• CPU completes task and enters sleep, stop or 

standby mode 

• Assembly instructions WFI and WFE suspend 

execution until wakeup by interrupt request or 

event 

• At wakeup, CPU resumes execution ➔ quite 

often by directly calling the associated ISR 

 

4.7.1. Enter Sleep Stop Mode with WFI and WFE 

 

4.7.2. System Control Register (SCR) 

 

• Address: 0xE000ED10 (this is a register defined 
by ARM and not by ST) 

• SEVONPEND: Send Event on Pending bit  only 
relevant for WFE, not for WFI 
o 0: Only enabled interrupts or events can 

wakeup the processor 
o 1: Enabled events and all interrupts, including 

disabled interrupts, can wakeup the 
processor 

• SLEEPDEEP 
o 0: Sleep mode 
o 1: Deep sleep mode 

• SLEEPONEXIT 
o 0: Do not sleep when returning to Thread 

mode. 
o 1: Enter sleep, or deep sleep, on return from 

an interrupt service routine. 

 

 
4.7.3. Using WFE in polling loops 

 
Without WFE, a polling loop consumes power and 
results in lower energy efficiency 
With WFE, power consumption by polling loop is 
significantly reduced 

 
• PRIMASK: Priority Mask Register in the NVIC 

Enable/disable all interrupts 

• SEVONPEND Send Event on Pending bit in 
system control register (SCR) 

• NVIC Nested Vectored Interrupt Controller 
All interrupts enabled in the peripherals wakeup. 
However, execution of ISR depends on configuration 
in NVIC 



Additionally, in case of WFE, the system will wake up 
in case of an event in EXTI.  

 
4.7.4. Wakeup Interrupt Controller (WIC) 

• A standardized ARM peripheral 

• WIC mirrors the Interrupt detection function 
when Cortex‐M in low power mode 

• Restore power and clock when binterrupt / 
event detected 

 

4.7.5. Sleep on exit 

• Enter Wait-for-Interrupt (WFI) sleep mode when 
exiting an exception handler 

• System control register (SCR) -> SLEEPONEXIT bit 

 

 

4.8. Sources for Wakeup 
Wakeup examples in Sleep Mode 

• CPU clock stopped 

• Peripherals running 
o They generate interrupts or events 

• transmission of byte completed on UART 

• timer expires 

• analog watchdog triggers i.e. analog value is 

outside programmed thresholds 

• DMA transfer completed 

• byte received on SPI 

• edge on GPIO 

4.8.1. Wakeup sources in Stop mode  

• CPU and peripherals in low power mode ➔ i.e. 
peripherals do not generate interrupts 

• EXTI provides 23 sources for wakeup 

• EXTI: External Interrupt Controller 

 

4.9. Real Time Clock 
Runs from independent 32kHz clock 
Slow clock consumes low amount of power 

 

Interrupt-driven system in stop 

• Use RTC alarms for scheduled wake-ups 

• Use wake-up counter for periodic wake-up 

• Use GPIOs (through EXTI) to trigger wake-up 
through external events 

Alternatively, connect external RTC through 
GPIO/EXTI for wake-up 
 
 

4.10. Power Saving Techniques 

4.10.1. Using low-power modes 

• Keep the device as much as possible in low-
power modes 

• Best power management approach 
o Switching between different power modes 
o Simultaneously taking into account the 

application requirements 
► power consumption 
► wakeup sources/time 
► peripherals 



 

 

System clock 

• Power/current consumption depends on 
switching frequency 

• Static power strongly depends on temperature 
(offset of curves) 

 

The dynamic energy required to complete a task with 
a defined number of clock cycles is independent of 
the clock frequency 

𝐸𝑑𝑦𝑛 = 𝑃𝑑𝑦𝑛 ∗ 𝑇𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑉𝐷𝐷
2 ∗ 𝐶 ∗ 𝑓𝑐𝑙𝑘 ∗

𝑁

𝑓𝑐𝑙𝑘
= 𝑉𝐷𝐷

2 ∗ 𝐶 ∗ 𝑁 

High clock frequency allows to go to sleep earlier  

Reduces Tactive 

Individual choice of prescaler dividers can save 
energy. Not all the parts require the same clock 
frequencies 

4.10.2. Reduce switching on pins 
Chip pins typically have high supply voltage (3.3V) 
and high capacitive load 

𝐼𝑆𝑤 = 𝑉𝐷𝐷 ∗ 𝑓𝑆𝑤 ∗ 𝐶 

Reduce switching on clock pins by using a PLL 

(Phase Locked Loop 

 

4.10.3. Disable unused peripherals 
E.g. in RCC APB1 peripheral clock enable register 
(RCC_APB1ENR) 
 

I/O configuration 

• Unused Pins  Configure as analog inputs 
o Schmitt trigger input disabled  Zero 

consumption for I/O pin 

• Avoid pull-up and pull-down activation if not 
used 

• Output  I/O speed frequency at lowest possible 
value 

• Disable clock output pins if not used 

4.11. Power Debugging 
Potential issues 

• Floating I/O 
o Highly variant, especially at low temperatures 

or high humidity 

• Unexpected current sinking/sourcing 
o Voltage-level mismatch 
o Powered off ICs 
o LEDs 

• Analog peripherals 
o Constant current when enabled 
o Often active at sleep 

• Spurious wakeups 
o Unexpected interrupts reduce time in low-

power modes 
Typical static power consumption 
Gradient indicates high static power consumption 

 

Unexpected wakeups requiring different amounts of 

energy  

 

Unwanted periodic high energy drain 

 

Dynamic Power ➔ Reduce processing power 
consumption 

4.12. Examples 
 

 

 

 



5. Digital Sensors 

5.1. MEMS Sensors 
→Micro Electro Mechanical Systems 

- Integrate mechanical & electronic parts in 

single component 

o Directly placed on PCB 

- Digital output 

o No ADC required 

5.1.1. Advantages 
- Small, miniaturized, highly integrated 

- Low-cost, low power 

5.1.2. Disadvantages 
- Less accurate than bigger sensors 

5.2. Connecting Sensors 

 

5.2.1. SPI 

 

5.2.2. I2C 

 

5.2.3. UART 

 

5.2.4. 1-Wire 

 

5.3. Processing in MC 

 

5.3.1. Calibration 
Compensate for offsets by: 

- Scaling: Linear transformation 

- Conversion: conversion of units / data 

format 

5.3.2. Filtering 
- Removing noise 

5.4. Accessing Registers 

5.4.1. Writing 

 

 

 

 



5.4.2. Reading 

 

6. DMA - Direct Memory Access 
How do I transfer data between SPI and memory? 
Polling or Interrupt 

• Direct Memory Access (DMA) as an option to 
reduce the load on the CPU 

DMA functionality 

• Provide high-speed data transfer between one or 
more units 

• No CPU action 

• Keeps CPU resources free for other operations 

• DMA is an additional bus master 

 

• Direct memory access (DMA) used to provide 
high-speed data transfers 
o peripherals-to-memory 
o memory-to-peripheral 
o memory-to-memory (only DMA 2) 

• DMA moves Data without any CPU interventions 
o Keeps CPU resources free for other 

operations 

• DMA controller combines powerful dual AHB 
master bus architecture with independent FIFO 
to optimize the bandwidth of the system 
o Based on a complex bus matrix architecture. 

• The two DMA controllers have 16 streams in 
total (8 for each controller) 
o Each dedicated to managing memory access 

requests from one or more peripherals. 
o Each stream can have up to 8 channels 

(requests) in total. And each has an arbiter for 
handling the priority between DMA requests. 

6.1. Peripheral-to-memory  DIR = ‘00‘ 

• ‘Interrupt’ condition (request) on peripheral 
triggers transfer 

• Load data from peripheral into FIFO 
o Source address defined by peripheral address 

register (SxPAR) 
o Byte, half-word or word depending on 

configuration 

• Store data to memory 
o Immediately in direct mode, or otherwise if 

programmed FIFO level reached 
o Destination address defined by memory 

address register (SxM0AR) 
o Byte, half-word or word depending on 

configuration 

6.2. Memory-to-peripheral  DIR = ‘01‘ 

• Transfer starts immediately after stream enable 

• Pre-load data from memory into FIFO 
o Source address defined by memory address 

register (SxM0AR) 
o Byte, half-word or word depending on 

configuration 

• Each time a peripheral request occurs, data from 
FIFO is stored to peripheral 
o Destination address defined by peripheral 

address register (SxPAR) 
o Byte, half-word or word depending on 

configuration 

• Reload of FIFO from memory 

o Direct mode: Immediately after store 
o Otherwise as soon as FIFO level is 10 below 

programmed level 

6.3. Memory-to-memory  DIR = ‘10‘ 

• Transfer starts immediately after stream enable 

• Load data from memory into FIFO 
o Source address defined by peripheral address 

register (SxPAR) 
o Byte, half-word or word depending on 

configuration 

• When programmed FIFO level is reached, data is 
stored to memory 

o Destination address defined by memory 
address register (SxM0AR) 

o Byte, half-word or word depending on 
configuration 

Direct mode and circular mode are not allowed 

6.4. Supported Transfers and Requests 

 



 

 

DMA 1 Request Mapping 

 

DMA 2 Request Mapping 

 

Only 8 predefined requests can trigger an individual 
stream 

E.g. it is not possible to trigger Stream2 by ADC1 

6.5. DMA Configuration 
DMA stream x configuration register (DMA_SxCR) 

• CHSEL[2:0] Channel selection 0-7 

• MSIZE[1:0] Memory data size 

• PSIZE[1:0] Peripheral data size 
o 00: 8-bit / 01: 16-bit / 10: 32-bit 

• MINC/PINC Memory/Peripheral increment mode 
o 0: address pointer is fixed 
o 1: address pointer is incremented after each 

data transfer 

• DIR[1:0] Data transfer direction 
o 00: Peripheral-to-memory 
o 01: Memory-to-peripheral 
o 10: Memory-to-memory 

• EN Stream enable 

 

 
Pointer increment – MINC and PINC bits in SxCR 

• Configure in SxCR whether source and/or 
destination addresses need to be incremented 

• Increment is done after transfer 

• Value of increment depends on transfer size 

 

1. Disable stream, i.e. reset EN bit in SxCR Read 

SxCR until EN == 0  all transfers finished 1) Clear 

interrupt status registers LISR and HISR 

2. Set peripheral address register SxPAR 

3. Set memory address register SxM0AR 

4. Configure number of transfers in SxNDTR 

5. Select DMA channel request in CHSEL[2:0] in 

SxCR 

6. Configure stream priority PL[1:0] in SxCR 

7. Configure FIFO usage 

8. Configure data transfer direction, data widths, 

interrupts, increments and others in SxCR 

9. Activate the stream by setting EN in SxCR 

 

ST HAL: Using structs and functions 

• Instantiate a handle 

• Use handle to configure and start DMA 

 

DMA FIFOs 

• Each stream has an independent 4-word FIFO, 

i.e. a total of 16 bytes 

• Transfer sizes on source and destination can be 

different 

o byte vs. half-word vs. word 

• Threshold levels can be programmed 

• Direct mode does not use FIFO 

6.5.1. DMA interrupts 

• For each stream, an interrupt can be produced in 
the following events  registers LISR and HISR 

• Transfer complete 
o The programmed number of transfers has 

been completed 
o Tell the CPU to take back control 

• Transfer error 
o E.g. a bus error during a DMA access on the 

bus 



 

6.6. Arbitration 
CPU and DMA1 both require the bus to SRAM1 

• Several masters (including CPU and DMA1) can 
request AHB bus in case they have data to 
transfer 

• An arbiter decides who gets the bus based on a 
round-robin scheme (bus grant) 

DMA internal arbiter 

• Manages the 8 streams based on the 
programmed priority 

• Then, generates request to AHB bus 

• Priority levels can be programmed per stream 

 

6.6.1. Parallel transfers 

Pipeline Transfer 

 

 

 

 

 

6.7. Power savings with DMA 
Sleep with DMA 

• Put CPU into sleep 

• Let DMA service “interrupts” from peripherals 
o E.g. transfer data received on I2C to memory 

• DMA issues an interrupt after programmed 
number of transfers 
o Wakes up the CPU 

 

7. Timer Applications 
Frequency of Digital Signals 

 

Direct frequency counting 
Count number of edges of an input signal over a 
defined period of time (T) 
ARR – Auto Reload Register defines measurement 
period. Adapt measurement window (ARR) 
depending on Timer 2 values 

 

Reciprocal frequency counting 

• Count periods of a fast reference clock 

• Edges of input signal start and stop counter 

• Objective: Measure fsignal on GPIO pin  choose 
fcounter >> fsignal 

• Rising edge on GPIO pin captures value of 
Counter and resets Counter 

• CCR contains the number of internal clock pulses 
during a period on the input pin 

I.e., choose Reference clock much faster than Signal 

to be measured 

 

Advantages / disadvantages reciprocal counting 

• More complex, higher hardware requirements 
o ‘Floating point’ routines to calculate the 

frequency 

• Higher resolution 
o Fixed in multiples of counter clock 
o Independent of input signal frequency (as long 

as fcounter >> fsignal ) 
Note: Accuracy depends on the clock stability of the 

unit 

7.1. Frequency Multiplication 

• Use frequency multiplier to generate an output 
with a higher frequency 

• Measure frequency using timer 1 
o Reciprocal frequency counting 

• Generate output with timer 2 
o Reload timer 2 with capture value of timer 1 
o Timer 2 runs on higher frequency (fcounter_2) 

7.2. Software Timers 
Problem 

• Applications often need multiple timing 
elements 

• A microcontroller only has a limited number of 
HW-timers 

• Implementing numerous timing elements with 
individual HW-timers results in complex 
interrupt structures 

o Many interrupts 
o Potential problems during run time 
o Complex testing 

Solution: Software timer 



• A single hardware timer with a single interrupt 
service routine (ISR) 

• Timing elements implemented as software 
timers 

 

8. Structuring Embedded Software 

8.1. Modularity 

• Partition functionality into manageable chunks 

• Hierarchical design 

• Group together what belongs together 

• Lean external interface 

• Each module fulfills a single defined task 
 
High cohesion 

• Strength of relationship between functions and 
data of a module 

• Module functions and data shall have much in 
common 

Low coupling 

• Minimize dependencies between modules  
Avoid circular dependencies 

• Lean interfaces 

8.1.1. Encapsulation and Data Hiding 

• Split interface from implementation (see also 
previous lecture on definition vs. declaration) 

• Do not disclose implementation details 

• Maintain freedom to change implementation at 
any time 

8.1.2. Layering 

• Hierarchical dependencies 

• Each layer provides a specific service to the 
upper layer 

• Upper layer uses a service from the lower layer 

8.1.3. Layering – Call-backs 

• Inversion of control 
o Lower layer calls function in higher level 

• Specify function to be called as an argument, i.e., 
a function pointer 

 

8.2. Passing Data from/to ISR 

8.2.1. Global variable 

• Code works fine with optimization level 0 
o Number of executed interrupts is correctly 

displayed on LED 

• Then you crank up the optimization level of your 
compiler 

o LEDs always show a constant value 

 

 

However, volatile does not prevent data consistency 
issues of shared objects 

8.2.2. Register a private variable 

• Memory for counter is allocated in main program 

• Address is passed as a parameter in init_irq() 

• Module interrupt stores the parameter in a 
private variable 

 

static is a storage class specifier for the variable 

being defined, here this is count_ptr. Therefore 

count_ptr is only visible in module interrupt 

volatile is a type qualifier for the type where 

count_ptr points to. 

8.2.3. Getter function (accessor) 
Provides encapsulation 

Advantage: Access through single channel 

• Avoids accesses by mistake e.g. by confusing 
variable names 

• Easier debugging 
o Allows setting a breakpoint or adding a logging 

function1) 
o Find out from which module an access takes 

place 

• Setter: Allows implementing a validation of input 
parameters, e.g., a range check, at a single 
location 

o As opposed to duplicating your range checks all 
over your code 

• Make access atomic: Possibility to turn-off/on 
interrupts in central place 

8.2.4. Register a call-back  
ISR calls a function in main module 
handler() can be changed without modification of 

module interrupt 

8.2.5. Queue 

• main() instantiates queue and passes the pointer 
to module interrupt 

• Module interrupt enqueues data; main() 
dequeues data 

• Synchronization needs to be solved in module 
queue 

 
 
 
 
 
 



8.3. ISR Data Consistency Issues 
Interrupts may occur at any time during execution 

• Between any two assembly instructions 

• Within a C-statement 
Interrupt service routines (ISR) 

• Have to be treated as parallel threads1) 
o I.e., as a sequence of instructions that can run 

in parallel to the main program flow 

• Require synchronization to the main program 
Data consistency needs special attention 

• Verification of interrupt service routines is 
challenging 

• Timing constraints 

• Priorities 
Keep ISRs brief  use as few parallel interrupts as 

required 

Problem may prove difficult to reproduce / debug 

• Chances are it only occurs every few hours or 
even every few days 

• Before you fix the problem, you should 
reproduce it 
o In a reliable and (if possible) automated way 

• What can you do to reproduce it? 
o You do not want to spend hours looking at 

the displays 
Critical section 

• A piece of a program that may not be 
interrupted 

• Access to the shared resource needs to be 
protected 

• ISR may not update count as long as main is 
reading it 

• Reading count should be an atomic operation 
o I.e. the operation may not be interrupted 

 

Possible fix: Disable interrupts when copying 

• Drawback: Increases interrupt latency 

Use disabling and re-enabling interrupts with 
caution 

• If you use it too generously funny things can 

happen 

 

Call-backs don't make shared objects go away 

• ISR does not even access the variable count 

• But the callback may still have a data consistency 
problem 

 

9. Partitioning reactive systems 
Reactive System: An embedded system reacting to 

external, asynchronous events. The events can occur 

in parallel. 

9.1. Cooperating FSMs 
Port 

• Defines the messages that can be sent and 
received by an FSM 

• Output message  action of the FSM 

• Input message  event of the FSM 
Link 

• Defines a connection for sending messages 

 

The actions of FSM A and of FSM B both become 
events for FSM C 
 

FSM with event queue 

• Collect events generated by different FSMs / 
objects 

• Buffered in event queue (FIFO) 
o Avoids losing events 
o Decouples event generation and processing 

of events 

• FSM processes one event after the other 

• Events are deleted after processing 
 

9.2. IMPLEMENTING QUEUES 

• FIFO – First In, First Out 

• Implemented as ring buffer / circular buffer  
avoids copying data 

• Tail – indicates where the next element shall be 
inserted (write) 

• Head – indicates the element that is next in line 
(read) 

 

9.2.1. The data structure of a Queue 

 

 

9.2.2. Methods of a Queue 
void queue_init(queue_t *queue) 

→initialize queue before first use 

uint32_t queue_enqueue(queue_t *queue, uint32_t 

data) 

→enqueues data at tail of queue 

uint32_t queue_dequeue(queue_t *queue) 

→removes element at head & moves the head tot 

he next element.  

 

 



9.3. Code Structure of an FSM 

9.3.1. FSM interface 
Other tasks put events into an event queue. The 

scheduler periodically calls a handle_event function 

of the FSM, which reacts to the next event in the 

queue. 

9.3.2. Implementation 

 

 

 

 

9.4. COOPERATIVE SCHEDULER 
Scheduler calls handle_event() functions 
 

10. RTOS 

• Scheduling of threads 
o Predictable and deterministic: Execute within 

time bounds 
o Fair access to resources 
o Provide time reference 

• Communication 
o Exchange of events and data between threads 

• Synchronization 
o Signaling 
o Critical sections, mutual exclusion, semaphores 

Thread of execution: An independent flow of control 

that can be scheduled individually 

10.1. Scheduler 
Loads and dispatches threads to processor 

• Threads get their share of execution time until 

o They block on (wait for) some I/O 

o Sleep deliberately/wait on some event 

o A higher priority thread wants to run 

o Used up their maximum time slice 

• Then put into wait-queue until it’s their turn 

again 

• Scheduling algorithm 

o Various choices 

o None is “perfect” 

o Challenge is that no thread is starving, i.e., not 

executed due to other threads consuming all 

the slots 

 

 

 

 

10.2. RTOS – Concepts 

10.2.1. Cooperative scheduler 
Picks thread and lets it run 

• Until it blocks either on I/O or waiting for 

another process 

• Or until it voluntarily releases the CPU  

Threads will not be forcibly suspended 

 

10.2.2. Preemptive scheduler 
In addition, a preemptive scheduler 

• May preempt the execution of a thread in favor 

of another thread 

• E.g., the running thread is suspended for a 

thread with higher priority 

• E.g., after it used up its time slice, the running 

thread is suspended for another thread of same 

priority 

 

10.2.3. Context switch 
Saves the context of the preempted thread 

 



10.2.4. Hard vs. soft real-time 

 

 

10.3. Thread Management 
RUNNING Currently running thread Only one thread 
at a time 
READY Ready to run 
WAITING Waiting for an event to occur 
INACTIVE Not created or terminated 
 
Priority-based preemptive scheduler 
At each systick, the active thread with the highest 
priority becomes the RUNNING thread provided it 
does not wait for any event. 

10.3.1. CMSIS_RTOS RTX configuration 
Without “Round-Robin Thread switching” 

• A thread will only be pre-empted by a thread 
with a higher priority 

• Among threads with equal priority: Control will 
only be passed to another thread if the thread in 
control yields or goes waiting 

With “Round-Robin Thread switching” 

• Threads with equal priority are pre-empted in 
round-robin scheme 

• Round-robin Timeout [ticks] Specifies the 
number of ticks a thread is allowed to run before 
the round-robin preempts 

 
 
 
 

10.4. Inter-thread Communication 

10.4.1. Event types 
Support communication between multiple threads 

and/or ISR 

Signal is a flag that may be used to indicate specific 
conditions to a thread. Signals can be modified in an 
ISR or set from other threads. 
Message is a 32-bit value that can be sent to a 
thread or an ISR. Messages are buffered in a queue. 
The message type and queue size is defined in a 
descriptor. 
Mail 1) is a fixed-size memory block that can be sent 
to a thread or an ISR. Mails are buffered in a queue 
and memory allocation is provided. The mail type 
and queue size is defined in a descriptor. 

10.4.2. Signal events 

• Trigger execution between threads 

• Functions to control or wait for signal flags 
ISRs can call osSignalSet() but ISRs cannot call 

osSignalClear() or osSignalWait() 

10.4.3. Message queue 

• One thread sends data explicitly, while another 
thread receives it 

• FIFO-like operation 

• Functions to control, send, receive, or wait for 
messages 

10.5. Resource sharing 
Mutex - mutual exclusion 

• Protects access to shared resources 
o Use resource only by one thread at a time 
o E.g communication channels, memory, files 

• Mutex is passed between threads 
o Threads can acquire and release mutex 

 
 
 
 
 

10.6. Generic Wait Functions 

10.6.1. Add a time delay 
osStatus osDelay(uint32_t millisec); 

Thread goes into state WAITING and waits for a 
specified 
time period in millisec. 

10.6.2. Wait for unspecified events 
osEvent osWait(uint32_t millisec); 

The osWait function puts a thread into the state 
WAITING 
for at most the time period specified in millisec and 
waits for any of the following events: 

• A signal sent to that thread explicitly 

• A message from a message object that is 
registered to that thread 

10.7. Timer Management 
Create and control timer and timer callback 
functions 

• Timer objects can trigger the execution of a 
function (not threads) 

• When timer expires, a callback function is 
executed to run associated code 

 
Combining threads and ISRs 

• Applying priority levels 

10.8. Thread Management Revisited 
Prioritizing ISRs and threads 

• Interrupt handlers (ISR) signal the threads when 
an interrupt occurs 

• Processing is done in Threads not in ISRs 

• Thread priority level defines which thread gets 
scheduled by the kernel 

 
 
 



11. Structuring Embedded Software – Part 2 
Possible approaches for embedded software 

• Many real-life programs apply combinations of 

the presented approaches image source: 

colourbox 

• Which approach is best suited depends on the 

application at hand 

• No general rule that one approach is superior to 

the other 

11.1. Bare metal 
Running the embedded software directly on 

hardware as opposed to running it on top of an 

Operating System (OS) 

11.1.1. Polling – Round Robin 
After a certain period of time has passed, the thread 

gets switched to the next one 

11.1.2. Fully interrupt driven 
 

11.1.3. ISR flags 
 

11.1.4. ISR pass data through queues 
 

11.1.5. Co-operative Scheduler 
 

 

11.2. Firmware bridge SPI slave and UART 
Continuous streams with same nominal bitrate but 
subject to clock tolerances 

• CPU calls conversion functions on each byte 

Discuss potential firmware approaches 

• Identify challenges 

• Which missing information may influence your 
decision? 

11.3. Shared Memory 
Sharing objects may create consistency issues 

• Working concurrently requires special measures 

Recognizing shared objects 
-> finding potential programming errors 

 

Properties 

• Asynchronous 
o No predictable time relationship among 

instruction sequences 
o E.g., main program and interrupt service 

routine 
o E.g., multi-threaded programs 

• Access to shared memory requires coordination 
o Risk of data corruption  requires protection 

measures 

• Challenges 
o Identification of shared memory  find 

unintentional, hidden cases 
o Minimize use of shared memory to necessary 

cases 
When two or more asynchronous instruction 
sequences (threads) access the same data, 
that data is called shared memory. 

11.3.1. Recognizing Shared Objects 

• Important: How an object is used 

• Scope or allocation method do not allow 
conclusions 

• Three possible mechanisms for shared objects 
o Shared global data 
o Shared private data 
o Shared functions 

Try to minimize shared data 

• Reduces risk of data corruption issues 

• Reduces complexity of the software 
Apply careful design to protect unavoidable shared 

objects 

Read-only data 

• E.g., a table of constants 

• If shared data is read but never written  no data 
corruption can occur 

• However, as a program evolves the requirements 
might change 

• Risk that a program modification changes the 
code to read-write 

o E.g., hard-coded data could be loaded from a 
file in a later version 

o Use a comment in your source code that the 
read-only table is shared 

 
 
 

11.3.2. Data Consistency Issues 
Call-backs don't make shared objects go away 

• ISR does not even access the variable count 

• But the callback may still have a data consistency 
problem 

11.4. Mutex 
Ensures that only one thread at a time can access a 

resource, like communication channels, memory or 

files. Threads can acquire and release a mutex. While 

one thread has acquired it, the others can’t access 

until it is released.  

 


