MC1-Strickler Frederic & Janko Uehlinger

1. Memory from a Software POV

Watchdogs Understanding Memory from a
Last line of defense Software Point of View
Knowing your source code

Verification Interfacing External Hardware
Are we building the product right? Making the most of your inputs/outputs

Power Management
Achieving low power

Real-time Operating System
Threads: Scheduling and communication

Digital Sensors and Wireless
Adding interfaces
Partitioning reactive systems

Concurrent cooperating FSMs Direct Memory Access

Data transfers without the CPU

Structuring Embedded Software . S
Managing complexity. techniques and pitfalls Timer Applications

Measuring frequency and scheduling events

uint8 t varl; 0x2000'7800 0x1A varl

uint32_t wvar2;

st | <)
i . 0x2000' 7804 0x11 var2
mEmES & & 0x2000' 7805 0x27

uint8_t b; 0%2000' 7806 0x5E

} var3; 0%2000' 7807 0xC4
0x2000'7808% 0x92 var3.a
0x2000' 78083 0x81 var3.b

e Data type Implies size, i.e. number of bytes in
memory

e Name Used to access the memory region

e Value Content/data stored in the memory region

e Address Location in memory where the variable
resides

e Scope Part of the source code in which the name
is visible (known)

e Lifetime When is the variable created (allocation
of memory) and when is it destroyed
(deallocation of memory)

Sizes of integer types depend on architecture and
compiler!

Only Rule: Int must be bigger than char

stdint.h needs different h-files for different
Platforms so the program can stay the same for
different archtitectures

Same sizes for all architectures / compilers

Size of pointers is platform dependent

Definition:

e Introduces name/data type and allocates
storage space
e Function body

Declaration:

e Introduces name/data type
e Does not allocate storage space

Order of elements may influence number of required
bytes in memory if elements have different size
The compiler or programmer can optimize storage

typedef struct {
} large_struct_t;

Large makes holes in storage because halfword
always uses addresses dividable by 4.

typedef strsuct {

} compact_struct_t;

Interface -> header file

e Only declarations -> NO definitions
e No other #include statements 1)

Implementation -> .c file

e Provides definitions of items that have been
declared in header file

Content/data stored in the memory region

Content of variable is interpreted based on data type
E.g. casting: Bit representation stays the same,
interpretation changes

%: takes Value at Storage position and interprets it
dependent on the symbol that follows

%x int and output as unsigned Hex number

%d int and output as signed decimal number

%u int and output as unsigned decimal number

_ machine instructions
~ and constants

—

static allocation CODE or RO
without initial value —~__ or TEXT
initialized to 0" by loader T

static allocation
" with initial value®

" Bssvorzim

dynamic allocation __ DATAor RW &

g mallee() —~—

e
‘J' HEAR automatic allocation of

// local variables and function parameters

1 stack o

In Code (color-coded):

uint32 t bss_a;
uint32 t data a = 0x12;
static uint32 t bss b;
static uint32 t data b = 0x34;
void foo (void)
{
uint32 t *p;
uint32_t stack_a;
static uint32 t bss _c;
static uint32 t data d = 0x56;
const uint32 t read only c = 0x78;
P = (uint32 t*) malloc(sizeof (uint32 t));
if (p == NULL) { /* handle error */ }
free (p) ;
}

Keep the scope as small as possible

Terms 'local variables' and 'automatic variables' are
used interchangeably

Visibility of names in source code

e An arrangement between compiler/assembler
and programmer
e Not relevant for object code

source code 7

module : global gl
function (localto J

module
function . ‘
module - global]
functon locato || |
: module) —

function |g¢al —‘

Scope of automatic variables
Automatic variables have local scope
Begins at point of definition
Ends at end of containing block
Scope of variables with static allocation
e Static variables within function

o Local scope
e Static variables outside functions

o Module wide scope

o Starting from point of definition
e Global variables

o Visible within whole source code
Use static to provide encapsulation

Make functions and global variables private !!!
Add qualifier static for all objects that are not in

1.8.1. Automatic variables ex.

void foo(void)

{
uint32_t a;
uint32_t b = OxAB;

for (a = 0; a < 8; a++){
uint32 t ¢ = 0xCD;

- Creation:

o Memory for a, b, c allocated on

stack, when foo() is entered

o Recursion: several instances exist
- Initialization

o a:noinitialization!

o b:eachtime foo() is entered

o c: each time for block is entered

- Destruction: at the end of function, memory

is released (not deleted!)

1.8.2. Static variables ex.

// visible to all modules

// even when not part of header!
uint32_t s;

uint.32_t t = 0x78;

// visible within module bar
static uint32 t u;
static uint32_t v = 0x9A;

void bar (void)
{
// wvisible only within bar()
// inititialized ONCE at prg start

1.8.3. Dynamic Memory ex.

void bar(void)

{
uint32_t *p;
P = (uint32 t*) malloc(sizeof (uint32 t));
if (p == NULL) { /* handle error */ }

*p = OxEF; // manual init

é.;:;a(p): // release memory
}

- Creation

o By calling malloc()
o Use sizeof() operator
o Check return value of malloc()
> memory available?
- Initialization
o To be done by program
- Destruction
o By calling free()
o Responsibility of programmer

Common coding error
e Returning a pointer to an automatic variable

Alternative
e Allocate memory in calling function
e Passthe address

Passing read-only data
e Make function parameter a pointer to const

header file stacic 3123::2 X - oxac; e Shows that foo() is not supposed to change the
v data
n Destruction - Creation e Compiler enforces read-only
y []
Alocatonofmemens - Assian il vaes Jesleemen e o Memory is allocated, when program Use const Whenever Possible
e is loaded into memory
Type Creation Initialization Destruction - Initialization
R e o Just before program starts Issues for ‘digital’ signals
Automatic. | emmes e e g%zgﬁ;"i%ﬁ'g%ﬁf? O eachetum fram fincten o t,v,x:initialized to specified value e Voltage levels of input signals outside allowed
o s, u, w:initialized to zero range
Static ooy ogam | Onoe Al g eminen - Destruction e Slow edges
o Memory released when program e Spikes and glitches

Responsibility of programmer:
Source code has to explicitly By calling free ()

TR terminates e Noise on signal and/or supply

Dynami: By calling malloc ()

e Bouncing

e Transient oscillations (‘Einschwingen’)

2.1.1. Voltage level of GPIOs on STM32F4xx

e User defined through VDD

e CMOS voltage levels

e Most GPIOs are 5V tolerant

Ensure compatibility of logic levels

e Voltage levels of output and input stage have to
be compatible -> data sheets

e VOL/VOH of driver -> VIL/VIH of input stage

2.1.2. Schmitt-Trigger

because of noise so it doesn’t trigger on slight noise.

Hysteresis helps on noisy signals and on signals with

slow edges.

1. Avoid floating inputs (on unused pins)

Noise is a source of random power consumption by
making the buffer switch randomly Connect unused
pin to VSS/VDD on PCB or use pull-up/pull-down

2. Avoid use of pull-up if voltage on 1/0 pin exceeds
VDD

Causes cross-voltage domain leakage, e.g. when a
debugger probe driving 5V is connected

Voltage protection may cause leakage current if
VDD of STM32 is switched off

E.g. If the STM32 is switched off (VDD = 0V), but the
external circuit is still powered and provides a
voltage on the I/O pin. This may also occur in the
other direction, i.e. STM32 on, but external circuit
not supplied

Change of 10 state -> event (Falling/Rising)
Hardware edge detection through interrupts

Polling in software: Example on CT_BOARD
e Repeatedly read buttons and compare to last
value read

Read input only once and safe it to edit it multiple
times. Don’t read out input multiple times shortly
after one another and expect the same input

State of objects: Allocate memory on the stack and
pass by reference to a function

Switches and buttons are mechanical

e Preloaded spring

e Contacts bounce up to a few milliseconds
Key press: Every bounce is seen as input change

Hardware Debouncing: Often not available
Polling at low sample rates -> Read signal once
during bouncing

Disadvantages of polling at low sample rates

e Maximum sample rate defined by bouncing
High jitter -> often unacceptable

e longreaction times

e Potential missing of on/off sequences
Polling at higher frequency

e Problem: Every bounce detected

2.4.1. Option 1: Sliding window filter

e Filter for inputs

e Store last n samples in array

e Edge detected only when there

is a preliminary sequence of samples with same
values

Disadvantages

e Polling

e Length of window depends on uC frequency
2.4.2. Option 2: Debouncing timer

Block input after first occurrence for bouncing time
iB

e Flexible solution

e No dependency on clock frequency
e Doesn’t need processing power

e Works also using interrupts

More complex
(Software-) timer needed

Direct connection to GPIO input -> many GPIO ports

One input port per switch
n input ports for n switches

Connecting multiple switches
Most efficient way for more than 5 switches
Best layout: number of rows = number of

columns
Repeat for each column

Force all outputs high

| Set output for one column low |

v

| Read input bit pattern (rows) |

If one of the rows is low
--> use row and column to
lookup key

3.1.1. Fast scanning algorithm

Read in only two steps

Not possible with each microcontroller

(Changing input / output)

1. Read column

GPIO Port x

Qutput ‘

Input
7 6 5 4

3 2 1 0

I

& Tk
T T T
A

@U

+

$o
3
$o
3

o \eo

T T3 I

2.

Read row

3. Matrix Keyboards

GPIO Port x

Output

Input
3 2 1 0

7 6 5 4

t

t
3

TR
1 T

e
=1
==l

Lt Tt
LT T

=

Voo

1. Read column 2. Read row

Set row bits as output | Set column bits as output

| | ; |

‘ Set column bits as input | ‘ Set row bits as input ‘
4

‘ Set row bits to zero | ‘ Set column bits to zero ‘
Y

| | |

Read and save column bit pattern| Read and save row bit pattern

| Combine column and row patterns |

3.1.2. Using interrupt to avoid polling
Detect key stroke

e All outputs are forced low (initialization)
e No key pressed -> all inputs read high

e Using interrupt to detect key stroke

e Key pressure will start scanning algorithm
Scanning algorithm

e Both algorithms possible

4. Power Management and Low Power App.

e Low dynamic/operating power
o Dominated by transistor switching current
o Processor, memory, clocking circuits, other
analog circuits on chip
e Low standby power
o Caused by leakage
o Circuits, clocking circuits, active peripherals,
analog systems, RAM retention power
e High energy efficiency
o Ratio between processing capability and power
consumption
o Balance between performance and power
usage
e Wakeup latency
o Delay before processor can resume operation
after sleep mode
o Can be critical for some applications

Power to switch capacitive load C:

den =Vpp * Idyn = VDZD * C* foue

Switching power is
e Proportional to C, fclk
e Proportional to the square of VDD
4.2.1. Shrinking semiconductor process dim.
Increase performance

e Allows higher switching frequencies
Lower the supply voltage

e Reduces the dynamic power consumption

1.82
E*PZ.S = 052 *PZ.S

Increase the power density
e l.e. the chip gets hot-spots
Increase leakage currents

[] P1.8 =

Operate at low voltage to minimize dynamic power

den = VgD *C * fex

(1) Leakage of CMOS gates

e Subthreshold conduction

e Transistors have a small current even if they are
off

e Smaller process geometries have lower VDD but
higher leakage currents

e Ballpark for leakage currents of a chip: micro-
Amperes (uA)

(2) Power consumed by non-CMOS components

E.g. on a typical microcontroller there are sense
amplifiers, voltage references, constant current
sources, voltage regulators that contribute to overall
static power.

Pstat = Vpp * Istar

Static power is:

e Proportionalto VDD

Independent of switching frequency
The power you have even if no switching is going
on

Typical application: Active (run) and inactive phases

alternate
Tooo
ctive 1 ractve _ CPU and peripherals running

s Pactive = Pstat * Payn
g Egm Egyn
(:)

:
= Er § I Pinactive = Pstat

oo Toste | Time
N St g ongoing

Energy per cycle
Edyn = den * Lactive
Egtar = Pstar * (Tactive + Tingctive)
4.4.1. Units and Orders of Magnitude

Voltage | V Volt 0.9V-5V

Current | A Ampere Dyn: mA

Stat: uA-mA
Power W Watt W=V*A | Dyn: mW
=J/s Stat: uW-mw
Energy | Jloule J=w*s Dyn (1s): mJ
Stat (1s): u/-m)

the multi-meter measures the average consumption
because it is to slow to measure exact values.

Reduce the area below the curve

Y

4
g _____ _: 3. Processing power consumption
=)
o) 1
2 ik= 2 Processing time
& !

1 1. Static power consumption

1

L iy ——

Run System completely running

-/

CPU clock stopped

Sleep Peripherals running
Wakeup by interrupt or event

SRAM and register contents preserved | o and cptinve
Wakeup by interrupt or event udorhma_

1.2 V domain powered off (regulator disabled)
SRAM and register contents lost (except backup domain)
Limited wakeup conditions can initiate a reset cycle

CPU and peripheral clocks stopped } can be wolen

RTC and backup domain supplied through Vg
No wakeup = only power-up/reset

)

Main digital supply (VDD) is turned off
Vear

Turn-off the CPU clock — CPU still powered
Peripherals powered and clocked

Interrupt-driven system
e CPU completes task and enters sleep, stop or
standby mode

e Assembly instructions WFI and WFE suspend
execution until wakeup by interrupt request or
event

e At wakeup, CPU resumes execution =» quite

often by directly calling the associated ISR

Power consumption

sleep

:
g

consumptior|

Powered \
up

Enter
sleep Inlermpt
mode requests
Instructions WFI or WFE

De"'w Initialization Operating
power
time

Standby

Jiower

Image sources: J. Yiu: The definitive guide tot

4.7.1. Enter Sleep Stop Mode with WFI and WFE

SLEEPDEEP bit selects Sleep or Stop

Enter Sleep Mode Enter Stop Mode

WFI Wait For Interrupt

// clear SLEEPDEEP bit

Wakeup on
SCB->SCR &= ~(0x1 << 2u);

« Enabled interrupt request with higher priority
than current priority level

// enter sleep

__asm volatile ("wfi");

WFE Wait For Event

// clear SLEEPDEEP bit

Wakeup on
SCB->SCR &= ~(0x1 << 2u);

- Interrupt requests depending on configuration
See later slides
- Events // enter sleep

// set SLEEPDEEP bit
SCB->SCR |= (0x1 << 2u);

// clear PDDS, i.e. stop
PWR->CR &= ~(0x1 << 1u);

// enter stop
__asm volatile ("wfi");

// set SLEEPDEEP bit
SCB->SCR |= (0x1 << 2u);

// clear PDODS, i.e. stop
PWR->CR &= ~(0x1 << 1u);

Generated by EXTI block —asm volatile ("wfe"); // enter stop

__asm volatile ("wfe");

PDDS bit selects Stop or Standby

4.7.2. System Control Register (SCR)

kil 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
[Reserved
5 14 13 12 1110 9 [7 6 5 4 3 2 [0
SEVON sieep | SLEEP
Reserved PEND | pgs | DEEP | cyrr | Res.
W w | W

e Address: OXEOOOED1O0 (this is a register defined
by ARM and not by ST)
e SEVONPEND: Send Event on Pending bit & only
relevant for WFE, not for WFI
o 0: Only enabled interrupts or events can
wakeup the processor
o 1: Enabled events and all interrupts, including
disabled interrupts, can wakeup the
processor
e SLEEPDEEP
o 0:Sleep mode
o 1:Deep sleep mode
e SLEEPONEXIT
o 0: Do not sleep when returning to Thread
mode.
o 1:Enter sleep, or deep sleep, on return from
an interrupt service routine.

SLEEPDEEP

bitis set?
Interrupt or

hait debug
occurred

Normal sleep,
Wait-for-Interrupt

WFI
executed
Exit sleep mode and

continue to next
instruction, or halt

Deep sleep,
Wait-for-Interrupt | Interrupt or
halt debug
occurred

Evcn\ i 3 SLEEPDEEP
5
bit is set’ ‘ Event or
WFE Normal sieep, | IMterrupt
executed Wait-for-Event [\occured

Exit sleep mode and
continue o next
instruction

Deep sieep

t o
Wait-for-Event L

lnlenupl
occurred

Ciear event latch and
continue o next
instruction

4.7.3. Using WFE in polling loops
v

A peripheral is
programmed to carry
out a task

Read peripheral
status
Task completed? Task completed?
No
Yes Yes

Without WFE, a polling loop consumes power and
results in lower energy efficiency

With WFE, power consumption by polling loop is
significantly reduced

A peripheral is programmed
to carry out a task, with event
output when the task is
completed

Read peripheral
status

WFI Behavior Wakeup ISR Execution
PRIMASK cleared S
IRQ priority > current level “J;LE:;UL?; ;V:d U:ggzﬂ‘;g Y Y
IRQ priority < current level N
PRIMASK set (interrupt disabled)
interrupt with higher pric

IRQ priority > current level wakes up but does not trigger ISR Y A
IRQ priority < current level N
WFE Behavior Wakeup ISR Execution
PRIMASK cleared, SEVONPEND cleared | -

N N interrupt with higher prio
IRQ priority > current level wakes up and triggers ISR u ¥
IRQ priority < current level N N
PRIMASK cleared, SEVONPEND set to 1
IRQ priority > current level Y Y
IRQ priority < current level, or IRQ disabled(SETENA = 0) Y N
PRIMASK set (interrupt disabled), SEVONPEND cleared
IRQ pricrity > current level no wakeup, no interrupt N N
IRQ priority < current level N
PRIMASK set (interrupt disabled), SEVONPEND set to 1
IRQ priority > current level All interrupts enabled in the peripherals Y N
IRQ priority < current level wakeup, but there is no ISR execution ' N

e PRIMASK: Priority Mask Register in the NVIC
Enable/disable all interrupts

e SEVONPEND Send Event on Pending bit in
system control register (SCR)

e NVIC Nested Vectored Interrupt Controller

All interrupts enabled in the peripherals wakeup.

However, execution of ISR depends on configuration

in NVIC

Additionally, in case of WFE, the system will wake up

in case of an event in EXTI.

WFI and WFE

Can be awakened by debug events
Can be used to produce normal sleep or deep sleep.

SEVONPEND is set.

WFE can be awakened by an|external event signal.

Similarities Wake up on interrupt requests that are enabled and with higher priority than current level.

Differences Execution of WFE does|not enter sleep if the event register was set to 1} whereas execution

of WFI always results in slee
New|pending of a disabled interrupt can wake up the pracessor from WFE sleep if

WFI can be awakened by ar enabled interrupt request when PRIMASK]is set.

4.7.4. Wakeup Interrupt Controller (WIC)

e A standardized ARM peripheral

e WIC mirrors the Interrupt detection function
when Cortex-M in low power mode

e Restore power and clock when binterrupt /
event detected

Powered down
during deep sleep

IRG Cortex-M3
7~ D++ IRQ

NMI Ll NMI

Power
management wiC
Wak |
unit ake up = f\ \
i N
Sleep stalus\

PMU restore power

when wake up
request from WIC is
generated

WIC detect and hold interrupt
request while processor is
powered down

Processor state held in
state retention flip-flops

4.7.5. Sleep on exit

e Enter Wait-for-Interrupt (WFI) sleep mode when

exiting an exception handler

e System control register (SCR) -> SLEEPONEXIT bit

ISR1 (Interrupt
Service Routine)

ISR2 (Interrupt
Service Routine)

ISR3 (Interrupt
Service Routine)

Initialization
Enable
First time the Sleep-On-Exit
processor enter feature
sleep
Execute WFI

The processor Sleep

enter sleep
automatically

after each

interrupt
processing
P
ower A
Thread IRQ handler IRQ handler
Initialization
Sleep Sleep Sleep
A A A A A
Power up IRQ IRQ
Enter sleep IRQ exit IRQ exit
(Enter sleep (Enter sleep
automatically) automatically)

Wakeup examples in Sleep Mode
CPU clock stopped
Peripherals running

Time

o They generate interrupts or events
e transmission of byte completed on UART

e timer expires

e analog watchdog triggers i.e. analog value is

outside programmed thresholds
e DMA transfer completed
e byte received on SPI
e edge on GPIO

4.8.1. Wakeup sources in Stop mode

e CPU and peripherals in low power mode = i.e.

peripherals do not generate interrupts
e EXTI provides 23 sources for wakeup

e EXTI: External Interrupt Controller

Runs from independent 32kHz clock
Slow clock consumes low amount of power

o programmable alarms A + B
- Generate interrupt / wakeup
event when date and time is
reached

Calendar function

DR Date Register YearYY
Week day
Month MM
Day DD

TR Time Register AM/PM
Hours HH
Minutes MM
Seconds SS

SSR Sub Second Register

Wake-up timer

-> 16-bit programmable auto-reload
down-counter

- Generates periodic interrupt /
wake-up event

Interrupt-driven system in stop

e Use RTC alarms for scheduled wake-ups

e Use wake-up counter for periodic wake-up

e Use GPIOs (through EXTI) to trigger wake-up
through external events

Alternatively, connect external RTC through

GPIO/EXTI for wake-up

4.10.1. Using low-power modes

e Keep the device as much as possible in low-
power modes

e Best power management approach
o Switching between different power modes
o Simultaneously taking into account the

application requirements

» power consumption

» wakeup sources/time

» peripherals

Ipp (HA)
Run Mode
Wake-up
consumption f Stop mode
______ i_ . -
>
Time (ms)
Power Modes STM32F4
350
H Wakeup time [us]
300
® Current [uA]
250
200
150

100
50
]

Stop Mode 1 Stop Mode 2 Standby Mode VBAT Mode

System clock
e Power/current consumption depends on
switching frequency

e Static power strongly depends on temperature
(offset of curves)

45.0

40.0 ~
o P
P -
% 25.0 /////,/ : ;25
B /4// // —:f:c
15.0] //
10.0 4//
Nr

0.0 20.0 40.0 CPUFresq?Jgncy(MHz) 80.0 100.0 120.0
The dynamic energy required to complete a task with
a defined number of clock cycles is independent of
the clock frequency
N
Edyn = den * Lactive = VDZD * C * forp * E

=VI§D*C*N

High clock frequency allows to go to sleep earlier
Reduces Tactive

Individual choice of prescaler dividers can save

energy. Not all the parts require the same clock
frequencies

4.10.2. Reduce switching on pins

Chip pins typically have high supply voltage (3.3V)
and high capacitive load

Isy, = Vpp * fow * C

Reduce switching on clock pins by using a PLL
(Phase Locked Loop

4.10.3. Disable unused peripherals

E.g. in RCC APB1 peripheral clock enable register
(RCC_APB1ENR)

1/0 configuration

e Unused Pins @ Configure as analog inputs
o Schmitt trigger input disabled B Zero

consumption for 1/0 pin

e Avoid pull-up and pull-down activation if not
used

e Output B1/0 speed frequency at lowest possible
value

e Disable clock output pins if not used

Potential issues
e Floating I/0
o Highly variant, especially at low temperatures
or high humidity
e Unexpected current sinking/sourcing
o Voltage-level mismatch
o Powered off ICs
o LEDs
e Analog peripherals
o Constant current when enabled
o Often active at sleep

e Spurious wakeups
o Unexpected interrupts reduce time in low-
power modes
Typical static power consumption
Gradient indicates high static power consumption

N > o ®
5 ° 2 °
3 2 3 3
3 s 3 s
\

\

Accumulated Energy [uJ]

o

T T T T T T T T 1
0 2 4 6 8 10 12
Time [sec]

Unexpected wakeups requiring different amounts of
energy

w
=
3

rY
=
2

W
2
s

Accumulated Energy [ul]
e w
2 g
g g

]

)
&
@
s
[~

6
Time [sec]

Unwanted periodic high energy drain

8
2
s
\

Accumulated Energy [uJ]
5 B
5)
8 s
\

Time [sec]

Dynamic Power =» Reduce processing power
consumption

5. Digital Sensors

5.1. MEMS Sensors
->Micro Electro Mechanical Systems

- Integrate mechanical & electronic parts in
single component
o Directly placed on PCB
- Digital output
o No ADC required

5.1.1. Advantages
- Small, miniaturized, highly integrated
- Low-cost, low power

5.1.2. Disadvantages
- Less accurate than bigger sensors

5.2. Connecting Sensors

ing Sensors Microcontroller

Processor

Analog Sensor

.- s e

analog digital

Serial
m Interface

Digital Sensor

5.2.1. SPI

SPI > 4 wires

> Serial bus for on-board
connections

> Master (single master)

— Generates clock (SCLK)

- Initiates data transfer (5S)
> MOSI: Master Out Slave In
> MISO: Master In Slave Out
> Full-duplex
> Up to 10 Mbit/s

]

aangss

5.2.2.12C

12C < 2 wire interface
> Clock - SCL
> Data = SDA
> Each slave addressable

through unique 7/10-bit
address

> 8-bit oriented data
transfers

> Half-duplex

> Up to 3.4 Mbit/s

> Derivative: SMBUS
Simple communication in
PC: Fan, temperature, etc.

5.2.3. UART

UART
> Serial port
> Asynchronous

— Synchronization of each
byte with start/stop bit

> Full-duplex

> Typical baud rates of
9600, 19200, 38'400,
115'200 ... bit/s

> PC terminal programs

5 8B o Daka 158 iy

@ |=[7 1o 7] o o]0] o

5.2.4. 1-Wire

1-Wire

> Communication through
single wire (and common
ground)

> Dallas Semiconductor
(Today Maxim Integrated)

> Each device has unique
64-bit address

> 1-Wire line powers slaves
> Few compatible devices
> Half-duplex

> |nternal clock, 100 kbit/s

VDD
Pk
1-Wire

5.3. Processing in MC

Types of measurements

A7 Yo 's \ / —~)
(\ Y) (\
(() |
[“.3)) S \ °%e
N N/ / \ -‘/..
~ / .
e o S
high presicion high presicion high accuracy low aceuracy
high accuracy low accuracy low precision low precision

/ : /

m/ ~.‘\ p '/,»’* y
(0)) \ {\m’g)

calibration - e.g. allows compensating

for offset or slope errors filtering > e.g. moving average
Removing noise (high frequency components)

5.3.1. Calibration
Compensate for offsets by:

- Scaling: Linear transformation
- Conversion: conversion of units / data
format

5.3.2. Filtering
- Removing noise

5.4. Accessing Registers
5.4.1. Writing

#include “hal_spi.h”
#define CTRL1_XL_ADDR 0x10

CTRL1_XL

static example write(void)
{

accelerometer reg write (CTRL1_XL ADDR, 0x04);
1

static void accelerometer_reg_write (uint8_t address, uint8_t value)
{

uint8_t tx data[2];

uint8_t rx_data[2]; // will be ignored - but needed as param in

tx[0] = address;
tx[1] = value;

hal_spi_read write(2, tx data, rx data);

void hal_spi_read write(uintlé_t nr_of_bytes, uint8_t *tx buffer, uints_t *rx_buffer);

5.4.2. Reading

static example read(void)
{
uint8_t reg value;
reg_value = accelerometer_ reg read(CTRL1_XL ADDR) ;

}

static uint8_t accelerometer_reg_read(uint8_t address)
{

uint8_t tx data[2];

uint8_t rx data[2];

address | 0x80;
0;

tx[0] // bit 7 = 1 for read

tx[1]

hal spi_read write(2, tx_data, rx data);
return rx dataf[l];

}

6. DMA - Direct Memory Access

How do | transfer data between SPI and memory?

Polling or Interrupt

e Direct Memory Access (DMA) as an option to
reduce the load on the CPU

DMA functionality

e Provide high-speed data transfer between one or
more units

e No CPU action

e Keeps CPU resources free for other operations

e DMA is an additional bus master
Y

|-bus
CPU
Busmaster 1
D-bus

Flash
- a
S-bus

DMA Controller DMA AHE [AHB-APB 1] APB [Paripherals]
Susmaster2 = (as-apB2)< 7APE!) Peripherals |

e Direct memory access (DMA) used to provide
high-speed data transfers
o peripherals-to-memory
o memory-to-peripheral
o memory-to-memory (only DMA 2)
e DMA moves Data without any CPU interventions
o Keeps CPU resources free for other
operations

DMA controller combines powerful dual AHB
master bus architecture with independent FIFO
to optimize the bandwidth of the system

O

Based on a complex bus matrix architecture.

The two DMA controllers have 16 streams in
total (8 for each controller)

O

Each dedicated to managing memory access
requests from one or more peripherals.

Each stream can have up to 8 channels
(requests) in total. And each has an arbiter for
handling the priority between DMA requests.

‘Interrupt’ condition (request) on peripheral
triggers transfer
Load data from peripheral into FIFO

O

O

Source address defined by peripheral address
register (SxPAR)

Byte, half-word or word depending on
configuration

Store data to memory

O

Immediately in direct mode, or otherwise if
programmed FIFO level reached
Destination address defined by memory
address register (SXMOAR)

Byte, half-word or word depending on
configuration

Transfer starts immediately after stream enable
Pre-load data from memory into FIFO

o

o

Source address defined by memory address
register (SXMOAR)

Byte, half-word or word depending on
configuration

Each time a peripheral request occurs, data from
FIFO is stored to peripheral

o

o

Destination address defined by peripheral
address register (SxPAR)

Byte, half-word or word depending on
configuration

Reload of FIFO from memory

o Direct mode: Immediately after store
o Otherwise as soon as FIFO level is 10 below
programmed level

e Transfer starts immediately after stream enable
e Load data from memory into FIFO
o Source address defined by peripheral address
register (SxPAR)
o Byte, half-word or word depending on
configuration
e When programmed FIFO level is reached, data is
stored to memory
o Destination address defined by memory
address register (SXMOAR)
o Byte, half-word or word depending on
configuration
Direct mode and circular mode are not allowed

me Art)

1]
0
=1

i
@

(101100 Mbps)

Ethernet
(Chror

LCD
DMA1

| DmA2
DMA2D

O—0O— 04— J00—0
O—0— 01 OO0
O—0—0H4@ 000
O—0—0H4@ 000
o0
o0
O—O0O— 04101000

DMAZ Allows

Ethernet
(10/100 Mbys)

e rro*h:

AHB Advanced High-performance Bus
APB Advanced Pernipheral Bus

DMA2D

(Chrome An)

SRAM
{CCM 64 KB)

O—0O—0—0

@0 O O
00 O
o0 O
@0 O OO0

AHB2
(Peripherals)

(Mem. Controller)|

DMAZ2: Peripherals on APB2 OR any other component on the bus matrix

DMA 1 Request Mapping

Channel 0
Channel 1
Channel 2

Channel 3

Channel 4

Channel §

Channel 6

Channel 7

Stream 0
SPI3 RX
12C1 RX
TIM4 Ch_ 1

1283 Ext RX

UARTS RX

UARTS TX

TIMS Up
TIM5 Ch, 3

Stream 1

TIM2 Up
TIM2 Ch. 3

USART3 RX

UART7 TX

TIMS TRG
TIM5 Ch. 4

TIME Up

Stream 2
SPI3 RX
TIMT Up
1253 Ext RX

12C3 RX

UART4 RX

TIM3 Ch. Up
TIM3 Ch 4

TIMS Ch. 1

12C2 RX

DMA 2 Request Mapping

Channel 0

Channel 1
Channel 2
Channel 3
Channel 4
Channel 5

Channel 6

Channel 7

Only 8 predefined requests can trigger an individual

Stream 0
ADCA

ADC3
SPI1 RX
SPI4 RX

TIM1 TRG

stream

Stream 1

SAIA

DCMI
ADC3

SPI4 TX

USARTE RX

TiM1Ch 1

TIMB Up

Stream 2

TIMB Ch_ 1
TIMB Ch. 2
TIM8 Ch. 3

ADC2

SPI1 RX
USART1 RX
USARTE RX

TiM1Ch. 2

TIMB Ch_ 1

Stream 3

SPI2 RX

TIM4 Ch 2

1282 Ext RX

USART3 TX

UARTT RX

TIM5 TRG
TIMS Ch. 4

12C2 RX

Stream 3

SAIT A

ADC2
SPI5 RX
SPI1 TX
sSDIo
SPI4 RX

TIM1 Ch. 1

TIMB Ch. 2

Stream 4
SPI2 TX
TIM7 Up
1252 Ext TX

12C3 TX

UART4 TX

TIM3 TRG
TIM3 Ch. 1

TIMS Ch. 2

USART3 TX

Stream 4

ADC1

SAN B

SPI5 TX

SPI4TX

TIM1 TRG
TIM1 COM
TIM1 Ch. 4

TIMB Ch 3

Stream 5
SPI3 TX
12C1 RX
1253 Ext TX

TIM2 Ch. 1

USART2 RX

TIM3 Ch. 2

DAC1

Stream 5

SAI1 B

SPIE TX
CRYP Qut
SPI1 TX
USART1 RX

TIM1 Up

SPI5 RX

Stream 6

12C1 TX
TIM4 Up

TIMZ Ch. 2
TIM2 Ch_ 4

USART2 TX

UARTS RX

TIMS Up

DAC2

Stream 6

TIM1 Ch 1
TIM1 Ch. 2
TIM1Ch. 3

SPIB RX

CRYP In

SDIo

USARTE TX

TIM1 Ch. 3

SPI5TX

Stream 7
SPI3 TX
1261 TX
TIM4 Ch. 3

TIM2 Up
TIMZ Ch. 4

UARTS TX

TIM3 Ch. 3

12C2TX

Stream 7

DCMI

HASH In

USART1 TX
USARTE TX

TIM3 TRG
TIM8 COM
TIMS Ch. 4

E.g. it is not possible to trigger Stream2 by ADC1

DMA stream x configuration register (DMA_SxCR)

e CHSEL[2:0] Channel selection 0-7
e MSIZE[1:0] Memory data size
e PSIZE[1:0] Peripheral data size
o 00: 8-bit / 01: 16-bit / 10: 32-bit
e MINC/PINC Memory/Peripheral increment mode
o 0: address pointer is fixed
o 1:address pointer is incremented after each
data transfer
e DIR[1:0] Data transfer direction
o 00: Peripheral-to-memory
o 01: Memory-to-peripheral
o 10: Memory-to-memory
e EN Stream enable

Pointer increment — MINC and PINC bits in SxCR

e Configure in SXCR whether source and/or
destination addresses need to be incremented

e Increment is done after transfer

e Value of increment depends on transfer size

x=1.. 8, ie. the stream number

|_DMA_SxMoAR |

DMA comrollero
DMA_SxM1AR(T)

eo AHB memory [K Memory bus
port
Memory
| source
. FIFO et
REQ stREaw| Aroter [+ jevel FIFO

e I AHB peripheral
port
4
DMA_SxPAR

Peripheral DMA request

E PerlEherﬁl bus

Peripheral
destination

1. Disable stream, i.e. reset EN bit in SxCR Read
SXCR until EN == 0 @ all transfers finished 1) Clear
interrupt status registers LISR and HISR

2. Set peripheral address register SXPAR

3. Set memory address register SXMOAR

4. Configure number of transfers in SXNDTR

5. Select DMA channel request in CHSEL[2:0] in
SxCR

6. Configure stream priority PL[1:0] in SXxCR

Configure FIFO usage

8. Configure data transfer direction, data widths,
interrupts, increments and others in SxCR

9. Activate the stream by setting EN in SxCR

ST HAL: Using structs and functions

e Instantiate a handle
e Use handle to configure and start DMA

DMA FIFOs

e Each stream has an independent 4-word FIFO,
i.e. a total of 16 bytes
e Transfer sizes on source and destination can be
different
o byte vs. half-word vs. word
e Threshold levels can be programmed
e Direct mode does not use FIFO

6.5.1. DMA interrupts
e For each stream, an interrupt can be produced in
the following events [registers LISR and HISR
e Transfer complete
o The programmed number of transfers has
been completed
o Tell the CPU to take back control
e Transfer error
o E.g.abus error during a DMA access on the
bus

Interrupt event . Event flag Enable control bit
Half-transfer HTIF HTIE
Transfer complete TCIF TCIE

'Transfer error . TEIF TEIE
FIFO overrun/underrun FEIF FEIE
Direct mode error DMEIF DMEIE

CPU and DMAL1 both require the bus to SRAM1
e Several masters (including CPU and DMAL1) can
request AHB bus in case they have data to
transfer
e An arbiter decides who gets the bus based on a
round-robin scheme (bus grant)
DMA internal arbiter
e Manages the 8 streams based on the
programmed priority
e Then, generates request to AHB bus
e Priority levels can be programmed per stream
Bits 17:16 PL[1:0]: Priority level
These bits are set and cleared by software.
00: Low
01: Medium
10: High
11: Very high

6.6.1. Parallel transfers
Pipeline Transfer

|
i
A \
ch.1 i) H
o
f
i 1
i
i
i
i
i
i
|
i

i

|

Ch.2

e

'_._I_A_I_I_ (-
= | — i

} addressf bus access ack
[computation
[i /
Entsone “‘3;
1

wer Pus bel el

ZHAW, Microsomputer Systems 1

Sleep with DMA
e Put CPU into sleep
o Let DMA service “interrupts” from peripherals
o E.g.transfer data received on 12C to memory
e DMA issues an interrupt after programmed
number of transfers
o Wakes up the CPU

7. Timer Applications

Frequency of Digital Signals

N

T

1
f= T T = Period

number of events

requency = - -
f q Y time in seconds

Direct frequency counting

Count number of edges of an input signal over a
defined period of time (T)

ARR — Auto Reload Register defines measurement
period. Adapt measurement window (ARR)
depending on Timer 2 values

Input
Signal

Measurement
Period

e T

Reciprocal frequency counting

e Count periods of a fast reference clock

e Edges of input signal start and stop counter

e Objective: Measure fsignal on GPIO pin B choose
fcounter >> fsignal

e Rising edge on GPIO pin captures value of
Counter and resets Counter

e CCR contains the number of internal clock pulses
during a period on the input pin

l.e., choose Reference clock much faster than Signal
to be measured

Input
Signal J |

Reference
clock

T

Advantages / disadvantages reciprocal counting
e More complex, higher hardware requirements
o ‘Floating point’ routines to calculate the
frequency
e Higher resolution
o Fixed in multiples of counter clock
o Independent of input signal frequency (as long
as fcounter >> fsignal)
Note: Accuracy depends on the clock stability of the
unit

e Use frequency multiplier to generate an output
with a higher frequency
e Measure frequency using timer 1
o Reciprocal frequency counting
e Generate output with timer 2
o Reload timer 2 with capture value of timer 1
o Timer 2 runs on higher frequency (fcounter_2)

Problem
e Applications often need multiple timing
elements

e A microcontroller only has a limited number of
HW-timers
e Implementing numerous timing elements with
individual HW-timers results in complex
interrupt structures
o Many interrupts
o Potential problems during run time
o Complex testing
Solution: Software timer

e Asingle hardware timer with a single interrupt
service routine (ISR)

e Timing elements implemented as software
timers

8. Structuring Embedded Software

e Partition functionality into manageable chunks
e Hierarchical design

e Group together what belongs together

e Lean external interface

e Each module fulfills a single defined task

High cohesion

e Strength of relationship between functions and
data of a module

e Module functions and data shall have much in
common

Low coupling

e Minimize dependencies between modules
Avoid circular dependencies

e Leaninterfaces

8.1.1. Encapsulation and Data Hiding

e Split interface from implementation (see also
previous lecture on definition vs. declaration)

e Do not disclose implementation details

e Maintain freedom to change implementation at
any time

8.1.2. Layering

e Hierarchical dependencies

e Each layer provides a specific service to the
upper layer

e Upper layer uses a service from the lower layer

8.1.3. Layering — Call-backs

e Inversion of control
o Lower layer calls function in higher level

e Specify function to be called as an argument, i.e.,
a function pointer

10 Quualities of Portable Firmware

Portable Firmware

1) is modular

is loosely coupled

has high cohesion

is ANSI-C compliant

has a clean interface

has a Hardware Abstraction Layer (HAL)
is readable and maintainable

is simple

uses encapsulation and abstract data types
10)is well documented

LOXN2TL2LN

© @

8.2.1. Global variable
e Code works fine with optimization level 0
o Number of executed interrupts is correctly
displayed on LED
e Then you crank up the optimization level of your
compiler
o LEDs always show a constant value
Proper Use of C's volatile Keyword

A variable should be declared volatile whenever its value could change unexpectedly. In practici
only three types of variables could change:

1. Memory-mapped peripheral registers
2. Global variables modified by an interrupt service routine

3. Global variables accessed by multiple tasks within a multi-threaded application

If you are given a piece of flaky code to "fix," perform a grep for volatile. If grep comes up empty,
the examples given here are probably good places to start looking for problems.

However, volatile does not prevent data consistency

issues of shared objects

8.2.2. Register a private variable

e Memory for counter is allocated in main program

e Address is passed as a parameter in init_irq()

e Module interrupt stores the parameter in a
private variable

static is a storage class specifier for the variable
being defined, here this is count_ptr. Therefore
count_ptr is only visible in module interrupt
volatile is atype qualifier for the type where
count_ptr points to.

8.2.3. Getter function (accessor)

Provides encapsulation

Advantage: Access through single channel
e Avoids accesses by mistake e.g. by confusing
variable names
e Easier debugging
o Allows setting a breakpoint or adding a logging
functionl)
o Find out from which module an access takes
place
e Setter: Allows implementing a validation of input
parameters, e.g., a range check, at a single
location
o As opposed to duplicating your range checks all
over your code
e Make access atomic: Possibility to turn-off/on
interrupts in central place
8.2.4. Register a call-back
ISR calls a function in main module
handler() can be changed without modification of
module interrupt

8.2.5. Queue

e main() instantiates queue and passes the pointer
to module interrupt

e Module interrupt enqueues data; main()
dequeues data

e Synchronization needs to be solved in module
queue

Interrupts may occur at any time during execution
e Between any two assembly instructions
e Within a C-statement
Interrupt service routines (ISR)
e Have to be treated as parallel threads1)
o l.e., as a sequence of instructions that can run
in parallel to the main program flow
e Require synchronization to the main program
Data consistency needs special attention
e Verification of interrupt service routines is

challenging
e Timing constraints
e Priorities

Keep ISRs brief B use as few parallel interrupts as
required

Problem may prove difficult to reproduce / debug
e Chances are it only occurs every few hours or
even every few days
e Before you fix the problem, you should
reproduce it
o Inareliable and (if possible) automated way
e What can you do to reproduce it?
o You do not want to spend hours looking at
the displays
Critical section
e Apiece of a program that may not be
interrupted
e Access to the shared resource needs to be
protected
e ISR may not update count as long as main is
reading it
e Reading count should be an atomic operation
o l.e.the operation may not be interrupted

Possible fix: Disable interrupts when copying
e Drawback: Increases interrupt latency

Use disabling and re-enabling interrupts with

caution

e If you use it too generously funny things can
happen

Call-backs don't make shared objects go away

e ISR does not even access the variable count

e But the callback may still have a data consistency
problem

9. Partitioning reactive systems

Reactive System: An embedded system reacting to
external, asynchronous events. The events can occur
in parallel.

Port

e Defines the messages that can be sent and
received by an FSM

e Output message [action of the FSM

e Input message [event of the FSM

Link

e Defines a connection for sending messages

The actions of FSM A and of FSM B both become
events for FSM C

FSM with event queue

e Collect events generated by different FSMs /
objects

e Buffered in event queue (FIFO)
o Avoids losing events
o Decouples event generation and processing

of events
e FSM processes one event after the other
e Events are deleted after processing

e FIFO - First In, First Out

e Implemented as ring buffer / circular buffer
avoids copying data

e Tail —indicates where the next element shall be
inserted (write)

e Head - indicates the element that is next in line
(read)

9.2.1. The data structure of a Queue

typedef struct { /
uint32_t head;
uint32 t tail; «
uint32_t queue_ data[QUEUE_SIZE] ;

} queue_t; "\

head
tail

queue_data ——»

head —

W= o

tail —

QUEUE_SIZE -1

9.2.2. Methods of a Queue
void queue_init(queue_t *queue)

—>initialize queue before first use

uint32_t queue_enqueue(queue_t *queue, uint32_t
data)

—enqueues data at tail of queue
uint32_t queue_dequeue(queue_t *queue)

> removes element at head & moves the head tot
he next element.

9.3.1. FSM interface

Other tasks put events into an event queue. The
scheduler periodically calls a handle_event function
of the FSM, which reacts to the next event in the
queue.

9.3.2. Implementation

#include "example fsm.h"
#include "queue.h"

/* enumerate the states of the FSM */
typedef enum {

STATE A,

STATE_B,

STATE_C
} example fsm_state t;

/* event queue for this FSM */
static queue_t example fsm queue;

/* current state of the FSM */
static example_fsm_ state_t state = STATE A;

/* see header file */
void example_fsm put queue (example_ fsm_events_t event)
{

queue_enqueue (&example fsm queue, event);

}

/* see header file */
void example_fsm_handle_event (void)

{

uint32 t event;
—> event = queue_ dequeue (&example fsm queue);

[switch (state) {
case STATE A:
switch (event) {
case EXAMPLE FSM EVENT X:
state = STATE B;
// ... actions
break;

default:
g // no change

Scheduler calls handle event () functions

10. RTOS

e Scheduling of threads

o Predictable and deterministic: Execute within

time bounds

o Fair access to resources

o Provide time reference
e Communication

o Exchange of events and data between threads
e Synchronization

o Signaling

o Critical sections, mutual exclusion, semaphores
Thread of execution: An independent flow of control
that can be scheduled individually

Loads and dispatches threads to processor

e Threads get their share of execution time until
They block on (wait for) some I/0
Sleep deliberately/wait on some event
A higher priority thread wants to run
Used up their maximum time slice
e Then put into wait-queue until it’s their turn
again
e Scheduling algorithm
o Various choices
o None is “perfect”
o Challenge is that no thread is starving, i.e., not
executed due to other threads consuming all
the slots

O O O O

10.2.1. Cooperative scheduler
Picks thread and lets it run

e Until it blocks either on I/0 or waiting for
another process
e Oruntil it voluntarily releases the CPU

Threads will not be forcibly suspended

@ T i a's

A\B_,C_._A“

A can block B and C

time

10.2.2. Preemptive scheduler
In addition, a preemptive scheduler

e May preempt the execution of a thread in favor
of another thread

e E.g., the running thread is suspended for a
thread with higher priority

e E.g., after it used up its time slice, the running
thread is suspended for another thread of same
priority

|\. = . 1 2 . . [2

Ais preempted by the scheduler to let B get access

time

10.2.3. Context switch
Saves the context of the preempted thread

/ Context Switcl\

Save Task T?“:;':d“:f Load
Context 1nfo Execution T,:ng o
R0 -R12 — — —
LR (return address) : :

PC (program counter)
Context of Current Context of

XPSR (processer status register) \Task1 Context Task2/

10.2.4. Hard vs. soft real-time
deadline

average time

— >

hard real-time worst-case time

average time

soft real-time worst-case time

RUNNING Currently running thread Only one thread
atatime

READY Ready to run

WAITING Waiting for an event to occur

INACTIVE Not created or terminated

Priority-based preemptive scheduler

At each systick, the active thread with the highest

priority becomes the RUNNING thread provided it

does not wait for any event.

10.3.1. CMSIS_RTOS RTX configuration

Without “Round-Robin Thread switching”

o Athread will only be pre-empted by a thread
with a higher priority

e Among threads with equal priority: Control will
only be passed to another thread if the thread in
control yields or goes waiting

With “Round-Robin Thread switching”

e Threads with equal priority are pre-empted in
round-robin scheme

e Round-robin Timeout [ticks] Specifies the
number of ticks a thread is allowed to run before
the round-robin preempts

10.4.1. Event types
Support communication between multiple threads
and/or ISR

Signal is a flag that may be used to indicate specific
conditions to a thread. Signals can be modified in an
ISR or set from other threads.

Message is a 32-bit value that can be sentto a
thread or an ISR. Messages are buffered in a queue.
The message type and queue size is defined in a
descriptor.

Mail 1) is a fixed-size memory block that can be sent
to a thread or an ISR. Mails are buffered in a queue
and memory allocation is provided. The mail type
and queue size is defined in a descriptor.

10.4.2. Signal events

e Trigger execution between threads

e Functions to control or wait for signal flags

ISRs can call osSignalSet() but ISRs cannot call
osSignalClear() or osSignalWait()

10.4.3. Message queue

e One thread sends data explicitly, while another
thread receives it

e FIFO-like operation

e Functions to control, send, receive, or wait for
messages

Mutex - mutual exclusion
e Protects access to shared resources
o Use resource only by one thread at a time
o E.g communication channels, memory, files
e Mutex is passed between threads
o Threads can acquire and release mutex

10.6.1. Add a time delay

osStatus osDelay(uint32_t millisec);
Thread goes into state WAITING and waits for a
specified

time period in millisec.

10.6.2. Wait for unspecified events

osEvent osWait(uint32_t millisec);

The osWait function puts a thread into the state

WAITING

for at most the time period specified in millisec and

waits for any of the following events:

e Asignal sent to that thread explicitly

e A message from a message object that is
registered to that thread

Create and control timer and timer callback

functions

e Timer objects can trigger the execution of a
function (not threads)

e When timer expires, a callback function is
executed to run associated code

osTimerStart

osTimerStart (restart timer)

osTimerStop

¥ v 3 v O Time
Callback Callback Callback Callback

Combining threads and ISRs
e Applying priority levels

Prioritizing ISRs and threads

e Interrupt handlers (ISR) signal the threads when
an interrupt occurs

e Processing is done in Threads not in ISRs

e Thread priority level defines which thread gets
scheduled by the kernel

11. Structuring Embedded Software — Part 2

Possible approaches for embedded software

e Many real-life programs apply combinations of
the presented approaches image source:
colourbox

e Which approach is best suited depends on the
application at hand

e No general rule that one approach is superior to
the other

Running the embedded software directly on
hardware as opposed to running it on top of an
Operating System (OS)

11.1.1. Polling — Round Robin
After a certain period of time has passed, the thread
gets switched to the next one

11.1.2. Fully interrupt driven

11.1.3. ISR flags

11.1.4. ISR pass data through queues

11.1.5. Co-operative Scheduler

Continuous streams with same nominal bitrate but
subject to clock tolerances
e CPU calls conversion functions on each byte

Discuss potential firmware approaches

e Identify challenges

e Which missing information may influence your
decision?

Sharing objects may create consistency issues
e Working concurrently requires special measures

Recognizing shared objects
-> finding potential programming errors

Properties
e Asynchronous
o No predictable time relationship among
instruction sequences
o E.g., main program and interrupt service
routine
o E.g., multi-threaded programs
e Access to shared memory requires coordination
o Risk of data corruption & requires protection
measures
e Challenges
o Identification of shared memory & find
unintentional, hidden cases
o Minimize use of shared memory to necessary
cases
When two or more asynchronous instruction
sequences (threads) access the same data,
that data is called shared memory.

11.3.1. Recognizing Shared Objects

e Important: How an object is used
e Scope or allocation method do not allow
conclusions
e Three possible mechanisms for shared objects
o Shared global data
o Shared private data
o Shared functions
Try to minimize shared data
e Reduces risk of data corruption issues
e Reduces complexity of the software
Apply careful design to protect unavoidable shared
objects

Read-only data
e E.g., atable of constants
e If shared data is read but never written & no data
corruption can occur
e However, as a program evolves the requirements
might change
e Risk that a program modification changes the
code to read-write
o E.g., hard-coded data could be loaded from a
file in a later version
o Use acomment in your source code that the
read-only table is shared

11.3.2. Data Consistency Issues

Call-backs don't make shared objects go away

e ISR does not even access the variable count

e But the callback may still have a data consistency
problem

Ensures that only one thread at a time can access a
resource, like communication channels, memory or
files. Threads can acquire and release a mutex. While
one thread has acquired it, the others can’t access
until it is released.

thread 1 thread 2

mutex_m1

osMutexWait ()

thread 1

pre-empted thread 2

osMutexWait () I waits for mutex
and goes into

WAITING
control

returns to
thread 1 I
sMutexRelease ()
control returns
thread 1 fo thread 1 as

pre-empted mutex is now
osMutexRelease () available
[Pkt

