
Pascal Isliker

Computer Engineering

Hardware

• CPU Central Processing Unit

• Memory Stores instructions and data

• Input / Output Interface to external devices

• System-Bus Electrical connection of blocks

Datapath

• ALU Arithmetic and Logic Unit

• Registers Fast but limited storage inside CPU

Control Unit

• Finite State Machine Reads and executes instructions

• Types of instructions Data transfer, Arithemtic, logical and jumps

Memory

• A set of storage cells

• Smallest addressable unit

• 2𝑁 addresses

▪ RAM read/write

▪ ROM read

Software

From C to executable

1. Preprocessor

• Text processing

• Pasting of #include files

• Replacing macros (#define)

2. Compiler

• Translate CPU-independent C-code into CPU-specific assembly code

3. Assembler

• Translate to machine instructions

• Result: Relocatable object file

• Binary file → not readable with text editor

4. Linker

• Merge object files

• Resolve dependencies and cross-references

• Create executable

Pascal Isliker

Cortex-M Architecture

Registers

• 16 Core Registers

• 32-Bit wide

• R0 – R7 Lower Registers

• R8 – R12 Higher Registers

• R13 Stack Pointer Temp Storage

• R14 Link Register Return from Procs

• R15 Program Counter Addr of next Instr.

ALU

• 32-Bit wide processing unit

APSR (Flag Register)

• N Negative

• Z Zero

• C Carry

• V Overflow

Instruction Set

• 16-Bit Thumb instruction encoding

Instruction Types

• Data transfer Move, Load and Store

• Data processing Arithmetic, Logical and Shift operations

• Control flow Branches and functions

Assembly Program Structure

Code Data Stack

Directives for initialized data

• DCB Bytes

• DCW Half-Words

• DCD Words

Directives for uninitialized data

• SPACE Bytes to be reserved

Pascal Isliker

Data Transfer Instructions

Loading Data

• MOVS

▪ Reg to Reg MOVS R1, R2

▪ 8-Bit Literal MOVS R1, #0x1C

▪ Constant MOVS R1, #MyConst

• LDR

▪ 32-Bit Literal LDR R1, #0xA1B2C3D4

▪ Literal + Offset LDR R1, [PC, #12]

▪ Constant LDR R1, =MyConst

▪ Reg Value LDR R1, [R2]

• LDRB

▪ Load Register Byte

▪ Bits 31 to 8 set to zero

• LDRH

▪ Load Register Half-word

▪ Bits 31 to 16 set to zero

Load Array

• my_array = 3 * 4 Bytes

• Instructions = 5 * 2 Bytes

• Literals (0x08) = 1 * 4 Bytes

Storing Data

• STR

▪ Value from Register STR R1, [R2]

▪ Value from Reg + Offset STR R1, [R2, #0x04]

• STRB

▪ Store Register Byte (Low 8 bits of register stored)

• STRH

▪ Store Register Half-word (Low 15 bits of register stored)

Pascal Isliker

Arithmetic Operations

Overview

• ADD / ADDS Addition 𝐴 + 𝐵

• ADCS Addition with Carry 𝐴 + 𝐵 + 𝑐

• ADR Address to Register 𝑃𝐶 + 𝐴

• SUB / SUBS Subtraction 𝐴 − 𝐵

• SBCS Subtraction with carry (borrow) 𝐴 − 𝐵 − ! 𝑐

• RSBS Reverse Subtract (negative) −1 ∙ 𝐴

• MULS Multiplication 𝐴 ∙ 𝐵

Negative Number

• 2’ Complement 𝐴 = ! 𝐴 + 1

Carry and Overflow

unsigned

• Addition → C = 1 → carry result too large for available bits

• Subtraction → C = 0 → borrow result less than zero → no negative numbers

signed

• Addition → potential overflow in case of operands with equal signs

• Subtraction → potential overflow in case of operands with opposite signs

Addition and Subtraction

Flags (APSR = N, Z, C, V)

Instructions ending with with «S» allow flag modification

• ADDS

• SUBS

• MOVS

• LSLS

Multi-Word Addition with ADCS

Multi-Word Subtraction with SBCS

Pascal Isliker

Branch Instructions

Unconditional Branches

• B (immediate) B label

▪ Direct

▪ Relative

• BX (Branch and Exchange) BX R0

▪ Branch and Exchange

▪ Indirect

▪ Absolute

Conditional Branches

Flag-dependent and arithmetic branches

• Indirect

• Absolute

Overview

Type

• Unconditional Branch always

• Conditional Branch if condition is met

Address hand-over

• Direct Target addresses part of instruction

• Indirect Target address in register

Address of target

• Relative Target address relative to PC

• Absolute Absolute address

Flag dependent instruction

Unsigned

• Higher and Lower

Signed

• Greater and Less

Compare and Test

• TST AND without changing the value

• CMP SUBS without changing the value

Pascal Isliker

Logic and Shift Instructions / Integer Casting

Logical Instructions

The following instruction only affect N and Z flags

• ANDS Bitwise AND Rdn & Rm a & b

• BICS Bit Clear Rdn & !Rm a & ~b

• EORS XOR Rdn $ Rm a ^ b

• MVNS Bitwise NOT !Rm ~a

• ORRS Bitwise OR Rdn # Rm a | b

Shift Instructions

• LSLS Logical Shift Left 2𝑛 ∙ 𝑅𝑛 0 → 𝐿𝑆𝐵

• LSRS Logical Shift Right 2−𝑛 ∙ 𝑅𝑛 0 → 𝑀𝑆𝐵

• ASRS Arithmetic Shift Right 𝑅−𝑛 ∙ ±𝐴 𝑀𝑆𝐵 → 𝑀𝑆𝐵

• RORS Rotate Right 𝐿𝑆𝐵 → 𝑀𝑆𝐵

Sign-Extension

Add additional bits

• Unsigned zero extension fill left bits with zero

• Signed sign extension copy sign bit to the left

Truncation

Cast cuts out the left most digits

• Signed possible change of sign

• Unsigned results in module operation

Integer ranges based on word sizes

Pascal Isliker

Structured Programming – Control Structures

Selection (IF-ELSE)

Switch

Loops

• Do while: Post-Test Loop

• While = Pre-Test Loop

• For = Pre-Test Loop

Pascal Isliker

Subroutines and Stack

>>

Subroutine Call and Return

• Label with Name (MulBy3)

• Return Statement (BX LR)

Stack

• Stack Area (Section) Continuous area of RAM

• Stack Pointer (SP) R13 → points to last written data value

• PUSH {…} Decrement SP and store words

• POP {…} Read words and increment SP

• Direction on ARM full-descending stack

• Alignment word-aligned

• Only words 32-Bit

Stack – Push and Pop

• Number of Pushs = Number of Pops

• Stack-limit < SP < stack-base

Pascal Isliker

Parameter Passing

Where

• Register Caller and Callee use the same register

• Global variables Shared variables in data area

• Stack

▪ Caller: PUSH parameter on stack

▪ Callee: Access parameter through LDR

Passing through global variables

• Shared variables in data area

• Overhead to access variable

• Error prone, unmaintainable

Reentrancy

• Recursive Function Calls

▪ Registers and gobal variables are overwritten

▪ Requires an own set of data for each call

• Solution:

▪ ARM Procedure Call Standard

Passing through Registers

• By value

▪ Efficient and simple

▪ Limited number of registers

• By reference

▪ Allows passing of larger structures

ARM Procedure call Standard

Parameters

• Caller copies arguments From R0 to R3

• Caller copies additional parameters to stack

Returning fundamental data types

• Smaller than word zero or sign extend to word

• Word return in R0

• Double word return in R0 / R1

• 128-Bit return in R0 – R3

Returning composite data types

• Up to 4 bytes return in R0

• Larger than 4 bytes stored in data area

Pascal Isliker

Modular Coding / Linking

From source code to executable program

Compile / assemble each module

• Results in an object file for each module

Link all object files

• Results in one executable file

ARM assembly IMPORT and EXPORT keywords

Linkage control

• EXPORT for use by other module

• IMPORT from another module for use in this module

Internal symbols

• Neither IMPORT nor EXPORT

Managing complexity by modular programming

Topic Benefits

Enable working in teams Multiple developers working on the same source
repository

Useful partitioning and structuring of the programs Eases reuseing of modules

Individual verification of each module Benefits all users of the module

Providing libraries of types and functions For reuse instead of reinvention

Mixing of modules that are programmed in various
languages

E.g. mix C and assembly language modules

Only compile the changed modules Speeds up compilation time

Linker tasks

• Merge object file code sections

• Merge object file data sections

• Symbol resolution

• Address relocation

Linker Output

• AXF = ARM eXecutable File

Linker Input - Object files

Code section Code and constant data of the module, base at address 0x0

Data section All global variables of the module, based at address 0x0

Symbol table All symbols with their attributes like global/local, reference

Relocation table

• Which bytes oft he data and code section need to be adjusted (and how) after

merging the sections in the linking process

ARM tool chain uses ELF for object files

Pascal Isliker

Exceptional Control Flow

Interrupt sources

• Perfipherals signal to CPU that an event needs immediate attention

• Can alternativly be generated by software request

• Asynchronous to instruction execution

System exceptions

• Reset Restart of processor

• NMI Non-maskable Interrupt (cannot be ignored)

• Faults Undefined instructions

• System Level Calls OS calls – Instructions SVC and PendSV

Polling

Periodic query of status information

• Reading of status registers in loop

• Synchronous with main program

• Advantages

▪ Simple straightforward

▪ Implicit synchronisation

▪ Deterministic

▪ No additional interrupt logic required

• Disadvantages

▪ Busy wait -> wastes CPU time

▪ Reduced throughput

▪ Long reaction time

Interrupt-Driven I/O

Main program

• Initializes peripherals

• Afterwards it executes other tasks

• Peripherals signal when they require SW attention

• Events interrupt program execution

Advantage

• No busy wait -> better use of CPU time

• Short reaction times

Disadvantages

• No synchronization

• Difficult debugging

Storing the context

Interrupt event can take place at any time

• E.g. between TST and BEQ instructions

▪ ISR call requires automatic save off lags and caller saved registers

ISR call

• Stores xPSR, PC, LR, R12, R0-R3 on Stack

• Stores EXC_RETURN to LR

ISR Return

• Use BX LR or POP {…, PC}

• Loading EXC Return into PC

▪ Restores R0-R3, R12, LR, PC and xPSR from Stack

Pascal Isliker

Interrupt Control

Nested Exceptions

Program Status Registers PSRs

- IPSR Interrupt Program Status Register

- EPSR Execution Program Status Register

- APSR< Application Program Status Register

- xPSR Combination fo all three PSRs

Expection States

• Inactive

▪ Not active and not pending

• Pending

▪ Exception is waiting tob e serviced b CPU

▪ An interrupt event occurred (IRQn=1) but interrupts are disabled

(PRIMASK)

• Active

▪ Exception is being serviced by the CPU but has not completed

• Active and pending

▪ Exception is being serviced by the CPU and there is a pending

exception fort he same source

Pascal Isliker

Improving System Performance

Speed vs Low Power

Aspects of Optimization

Optimizing for Drawbacks on

Higher speed Power, cost, chip area

Lower cost Speed, reliability

Zero power consumption Speed, cost

Super reliable Chip area, cost, speed

Temperature range Power, cost lifetime

How to Increase System Speed?

Von Neuman Arhcitecture

- Same memory holds program and data

- Single bus system between CPU and memory

Harvard Architecture

- «Mark I» at Harvard University

- Separate memories for program and data

- Two sets of addresses/data buses between CPU and memory

RISC = Reduced Instruction Set Computer

- Few instructions, unique instruction format

- Fast decoding, simple addressing

- Less hardware -> allows higher clock rates

- More chip space for registers (up to 256!)

- Load-store architecture reduces memory access,

CPU works at full-speed on registers

- Higher clock frequencies

- Easy and shorter pipelines (instructio size / duration)

CISC = Complex Instruction Set Computer

• More complex and more instructions

• Less program memory needed with complex instructions

• Short programs may work faster with less memory accesses

Pascal Isliker

Fetching the next instruction, while the current one decodes

 Instructions per second

Without pipelining

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
=

1

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦

With pipelining

• Pipeline needs to be filled first

• After filling, instructions are executed after every stage

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
=

1

𝑀𝑎𝑥 𝑠𝑡𝑎𝑔𝑒 𝑑𝑒𝑙𝑎𝑦

Sequential vs. Pipelined

Timings and definitions (Example)

• Fe: fetch Read instructions 3 ns

• De: decode Decode instruction, read register or memory 4 ns

• Ex: execute Execute instruction, write back result 5 ns

Advantages of pipelining

• All stages are set tot he same execution time

• Massive performance gain

• Simpler hardware at each stage allows for a higher clock rate

Disadvantages

• A blocking stage blocks while pipeline

• Multiple stages may need to have access to the memory at the same time

Optimal pipelining

• All operations here are on registers

• In this example it takes 6 clock cycles to execute 6 instructions

• Clock cycles per instruction (CPI) = 1

Pascal Isliker

Special situation: LDR

• In this example it takes 7 clock cycles to execute 6 instructions

• Read cycle must complete on the bus before LDR instruction can complete

• Next 2 instructions must wait one pipeline cycle (S = stall)

• Clock cycles per Instruction (CPI) = 1.2

Ideas to further improve pipelining

• Branch prediction

▪ Store last decisions made for each conditional branch

▪ -> probability is high that the same decision is taken again

• Instruction prefetch

▪ Fetch several instructions in advance

▪ -> better use of system bus

▪ -> possibility of «Out of Order Execution»

• Out of Order Execution

▪ If one instruction stalls, it might be possible to already execute the next

instruction

Limits of optimization

• Complex optimizations -> sever security problems

• Instructions executed, that would throw access violations under «In Order»

circumstances.

• «Meltdown» and «Spectre» attacks: allow a process to access the data of another

process

Control Hazards

• Branch / jump decisions occur in stage 3 (ex)

• Worst case scenario – conditional branch taken:

Reduce control hazards

• Loop fusion reduces control hazards

Parallel Computing

• Streaming / Vector processing One instruction processes multiple data items simultaneously

• Multithreading Multiple programs/threads share a single CPU

• Multicore Processors One processor contains multiple CPU cores

• Multiprocessor Systems A computer system contains multiple processors

