
Pascal Isliker Page 1

Microcontroller Basics

Signal Groups

Data lines

• 8, 16, 32, 64 parallel lines of data

• Bidirectional (read / write)

Address lines

• Unidirectional: From master to slave

• Number of lines → size of address space

Control signals

• Control read / write direction

• Provide timing information

Accessing Control Registers in C

Slow Slaves

• Wait states are inserted depending on the address of an access

Timing Options

Synchronous

• Master and slave use a common clock

• Clock edges control bus transfer on both sides

• Used by most on-chip busses

• Off-chip: DDR and synchronous RAM

Asynchronous

• Slaves have no access to the clock of the master

• Control signals carry timing information to allow

synchronization

• Widely used for low data-rate off-chip memories

Pascal Isliker Page 2

Microcontroller Basics

Block Diagramm

• Address lines A[31:0]

• Data lines D[31:0]

• Control

▪ CLK Clock

▪ NE Not Enable

▪ NWE Not Write Enable

▪ NOE Not Output Enable

 Timing Diagram

▪ Write D[:] to A[:]: NE = 0, NWE = 0

▪ Read D[:] from A[:]: NE = 0, NOE = 0

Bus Access Size is determined by the NBL (0 - 3) (No Byte Line) signals.

• NBL = 1 → Byte used for Read / Write

• NBL[0:3] = 0011 → Read Half-Word

• NBL[0:3] = 0010 → Read Byte

Address Decoding

Interpretation of address line values. See wheather bus access targets a particular

address or address range.

Full Address Decoding

• All address lines are decoded

• A control register can be accessed at exactly one location

• 1:1 mapping – A unique address maps to a single hardware register

Partial Address Decoding

• Only a sub-set of the address lines is decoded

• Detects an address range or a set of addresses

• N:1 mapping – N unique addresses map to the same hardware register

• Map a hardware register to several addresses

Control Bits

• Allow CPU to configure slave

• CPU writes to register bit

• Slave uses output of register bit

• Usually read/write

Status Bits

• Allow CPU to monitor slave

• Slave write into register bit

• CPU reads register bit

• Usually read-only

Pascal Isliker Page 3

GPIO - General Purpose Input / Output

Register address = Base address + Offset

• Offset is given for each register in reference manual

• Base address defined in memory map (reference manual)

GPIO

Situation

• Microcontroller as general-purpose device

• Many functional blocks included

Problem

• Limited number of pins

• For a specific configuration, not all functions can be routed to I/O pins

Solution

• Many (all) pings are configurable

• Select the needed I/O pins / functions

• «pin sharing»

• Output multiplexer needs to be configured

Structure

Configuration Registers

• GPIOx_MODER[1:0] Direction e.g. Input, Analog mode, …

• GPIOx_OTYPER[0:0] Output type Push-Pull / Open-Drain (Low)

• GPIOx_PUPDR[1:0] Pull-Up / Pull-Down

• GPIOx_OSPEEDR[1:0] Speed Low, Medium, …

Setting and Clearing Bits - GPIOx_BSRR

• 0-15 Set Bits Set port bit by writing a ‘1’ to BSRR[bit]

• 16-31 Clear Bits Clear port bit by writing a ‘1’ to BSRR[bit+16]

• Ensures atomic access in software (no interruption possible)

Data operations

• Input Read register GPIOx_IDR

• Output Write register GPIOx_ODR or GPIOx_BSRR

Hardware Abstraction Layer (HAL)

Accessing a register

• Each GPIO port has the same 10 registers

• There are 11 GPIO ports → GPIOA – GPIOK

#define ADDR (* ((volatile uintXX_t *) (0x40020000)))

Pascal Isliker Page 4

Serial Connection – Overview / SPI

I2C – Inter-Integrated Circuit

• Synchronous half-duplex transmission (SCL, SDA)

• 7-bit slave addresses

Single Master – Multiple Slaves

• Master generates a common clock signal for all slaves

• MOSI From Master Output to all Slave Inputs

• MISO All slave outputs connected to single master input

• Slaves

▪ Individual select 𝑆𝑆1തതതതത, 𝑆𝑆2തതതതത, 𝑆𝑆3തതതതത

▪ 𝑆𝑆𝑥തതതതത =′ 1′ → Slave output MISOx is tri-state

Clock Polarity (CPOL) and Clock Phase (CPHA)

• TX provides data on ‘Toggling Edge’

• RX takes over data with ‘Sampling Edge’

UART - Asynchronous Serial Interface

• Transmitter and receiver use diverging clocks

• Synchronization using start/stop bits → overhead

• Longer connections require line drivers → RS-232/RS-485

SPI – Serial Peripheral Interface

• Master / Slave

• Synchronous full-duplex transmission (MOSI, MISO)

• Selection of device through Slave Select (𝑆𝑆തതത)

• No acknowledge, no error detection

• Four mode → clock polarity and clock phase

Pascal Isliker Page 5

Serial Connection - SPI

Properties

• No defined addressing scheme

▪ Use of 𝑆𝑆തതത instead → KISS

• Transmission without receive acknowledge and error detection

▪ Has to be implemented in higher level protocols

• Originally used only for transmission of single bytes

▪ 𝑆𝑆തതത deactivated after each byte

▪ Today also used for streams

• Data rate

▪ Highly flexible as clock signal is transmitted

• No flow-control available

▪ Master can delay the next clock edge

▪ Slave can’t influence the data rate

• Susceptible to spikes on clock line

Synchronizing Hardware and Software

• TXE TX Buffer Empty Software can write next TX Byte to register SPI_DR

• RXNE RX Buffer Not Empty A byte has been received. Software can read it from SPI_DR

Example

Ein Prozessor (SPI Master) sendet das Byte 0x3D = 0011 1101. Die Schnittstelle ist wie

folgt konfiguriert:

𝑀𝑜𝑑𝑒 = 3, 𝐶𝑃𝑂𝐿 = 1, 𝐶𝑃𝐻𝐴 = 1, 𝑀𝑆𝐵 − 𝐹𝑖𝑟𝑠𝑡

Pascal Isliker Page 6

UART / I2C – Universal Synchronous Receiver Transmitter / Inter-Integrated Circuit

Universal Asynchronous Receiver Transmitter – UART

Connecting shift registers with diverging clock sources

• Same target frequency

• Different tolerances and divider ratios

• Requires synchronization at start of each data item in receiver

UART Timing

Transition stop (‘1’) → start (‘0’)

• Receiver detects edge at the start of each data block (5 to 8 bits)

• Allows receiver to sample data «in middle of bits» → red edges

• Clocks have to be accurate enough to allow sampling up to parity bit

UART Characteristics

• Synchronization

▪ Each data item (5-8 bits) requires synchronization

• Asynchronous data transfer

▪ Mismatch of clock frequencies in TX and RX

▪ Requires overhead for synchronization → additional bits

▪ Requires effort for synchronization → additional hardware

• Advantage

▪ Clock does not have to be transmitted

▪ Transmission delays are automatically compensated

• On-board connections

▪ Signal levels are 3V or 5V with reference to ground

▪ Off-board connections require strong output drivers

I2C Bus - I2C – Inter-Integrated Circuit

• Bidirectional 2-wire

Clock → SCL Data → SDA

• Synchronous, half-duplex

• Each device on bus addressable

• 8-bit oriented data transfer

• Different bit rates up to 5 Mbit/s

• Suited for connection of multiple boards

• Multi-master possible

I2C Bus – Operation

• Master drives clock line (SCL)

• Master initiates / terminates transaction through START / STOP condition

I2C Bus – Driving Data on SDA

• Data driven onto SDA by master or by addressed slave

▪ Depending on transaction (read/write) and point in time

▪ Change of data only allowed when SCL is low

▪ Allow detection of START and STOP condition

I2C Bus – Data Transfer on I2C

• 8-bit oriented transfers

• Bit 9: Receiver acknowledges by driving SDA low

• Master defines number of 8-bit transfers (STOP)

Example: Ein Baustein soll zum lesen adressiert werden (7-Bit: 0x56)

Pascal Isliker Page 7

Timer / Counter

Binary up-counter or down-counter

• Counts events / clock pulses or external signals

• Output after a defined number of events

• Timer: counting clock cycles or processor cycles

• Counter: counting events

Use

• Count events Measure of time, frequencies, phases, periods

• Generate intervals, row of pulses, interrupts

Function

• Configure in up- or down-counting mode

• Select source

• 16-bit / 32-bit counter register

• Set interrupt flag → trigger interrupt

Prescaler

• Increase counting range

• Count only every n-th event

Insert-Capture

• Measuring intervals → puls lengths and periods

→ Counts ticks between timer start and an event

Up-counting mode

• From 0 to ARR

• Restarts from 0

• Generates overlow

Down-counting mode

• From ARR to 0

• Restart from ARR

• Generates underflow

Pulse-Width-Modulation PWM

Duty Cycle – Definition

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑂𝑛 𝑇𝑖𝑚𝑒

𝑃𝑒𝑟𝑖𝑜𝑑

Average signal

𝑉𝑎𝑣𝑔 = 𝐷 ∙ 𝑉𝐻 + ሺ1 − 𝐷ሻ ∙ 𝑉𝐿

Compare function produces PWM signal

• Toggle output pin when counter reaches CCR

• Mode = 1: UP: 𝐶𝑁𝑇 < 𝐶𝐶𝑅 DOWN: 𝐶𝑁𝑇 ≤ 𝐶𝐶𝑅

• Mode = 2: UP: 𝐶𝑁𝑇 ≥ 𝐶𝐶𝑅 DOWN: 𝐶𝑁𝑇 > 𝐶𝐶𝑅

Pascal Isliker Page 8

ADC / DAC

ADC – Analog to Digital Converter

• Converts input signal (voltage) to a digital value (N-bit)

• Conversion results in one of 2𝑁 possible numerical levels

• Raw input signal can be dynamic or static

▪ Dynamic signal (green) sampled at specific time intervals

▪ Samples transformed into series of discrete values (blue)

Input signals

• Differential inputs

• 𝑉𝑖𝑛+ signal to convert (non-inverting input)

• 𝑉𝑖𝑛− signal to convert (inverting input)

Signal ended mode

• Only 𝑉𝑖𝑛+ used

• 𝑉𝑖𝑛− is grounded

Reference voltage 𝑽𝑹𝑬𝑭+

• Internal or external stable voltage

• Needed to weight input voltage

Resolution

• Number of bits N

• Size of digital word

LSB → 1 LSB ≜ 𝑉𝑅𝐸𝐹 / 2𝑁

Full Sale Range (FSR)

• Range between analog levels of min. and max. digital codes

• 𝑉𝐹𝑆𝑅 is one LSB less than 𝑉𝑅𝐸𝐹

Quantization error

• Continuous → Discrete

• Introduces an error between -0.5 and +0.5 LSB

Offset error (zero-scaler error)

• Deviation of real and ideal N-bit ADC at input point zero

• Ideal: First transition at 0.5 LSB above zero

• Can be corrected using the microcontroller

Gain error

• Indicates how well the slop of an actual transfer function matches the slope

of the ideal transfer function

• Expressed in LSB or as a percent of full-scale range

• Calibration with hardware or software possible

Pascal Isliker Page 9

ADC / DAC

DAC – Digital to Analog Converter

• Converts N-bit digital input to analog voltage level

• Music from your MP3 player is read and converted back to sound

▪ A series of different values in the digital domain leads to a

series of steps in the analog domain.

▪ «Play-back» time depends on time between conversions

Output signal 𝑽𝒐𝒖𝒕

• Analog output

▪ Unipolar (only positive)

▪ Bipolar (positive or negative)

• Conversion yields approximation of digital signal

Reference voltage 𝑽𝑹𝑬𝑭

• Accurate reference voltage

• Needed to relate digital value to a voltage

ADC Example 1

Ein externes analoges Signal soll digital abgetastet werden.

Bei einer maximalen Referenzspannung von 𝑉𝑅𝑒𝑓 = 4.5V soll eine Abtast-Auflösung

von mindestens 5𝑚𝑉 erreicht werden.

Wie viele Bits werden mindestens für die Analog-Digital Wandlung benötigt.

4.5𝑉

0.005𝑉
= 900, log2ሺ900ሻ = 9.8 → 10 𝐵𝑖𝑡

ADC Example 2

Gegeben ist ein 3-bit ADC. Die Referenzspannung 𝑉𝑅𝐸𝐹 = 8𝑉 festgelegt.

In welchem Spannungsbereich bewegt sich der Quantisierungsfehler?

1 𝐿𝑆𝐵 =
𝑉𝑅𝐸𝐹

2𝑁
=

8𝑉

23
= 1𝑉

Der Quantisierungsfehler beträgt ± 0.5 ∙ 𝐿𝑆𝐵 → ± 0.5𝑉

Pascal Isliker Page 10

Memory

Übersicht

• PROM – Programmable Read-Only Memory

• EEPROM – Electrical Eraseable PROM

• NOR / NAN Flash

• SRAM – Static Random Access Memory

• DRAM – Dynamic Random Access Memory

Pascal Isliker Page 11

Cache

Definition

• Computer memory with short access time

• Storage of frequently / recently used instructions / data

Principle of locality

• Spatial locality likely close to next accessed location

• Temporal locality likely being accessed again in near future

Memory blocks

• Address range is partitioned into memory blocks

• Cache is guessing which blocks the CPU will need next

• Selected blocks copied to faster cache memory

• Cache hit Requested block is in cache

• Cache miss Requested block is not in cache

Organization - Fully associative

• Tag contains complete block identification

• Any cache line can load any block

Organization - Direct mapped

• Block identification split into tag and index

• Each block is mapped to exactly one cache line

• Multiple memory blocks mapped to the same line

Organization - N-way set associative

• Partition into sets

Pascal Isliker Page 12

Cache

Cache miss

• Cold miss first access to a block

• Capacity miss Working set larger than cache

• Conflict miss Multiple data objects map to same slot

Performance

• Hit rate ℎ𝑖𝑡𝑠 / 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

• Miss rate 𝑚𝑖𝑠𝑠𝑒𝑠 / 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 = 1 − ℎ𝑖𝑡 𝑟𝑎𝑡𝑒

• Hit time Time to deliver a block from cache to processor

• Miss penalty Additional time to fetch from memory (miss)

Replacement Strategies

• LRU Least recently used

• LFU Least frequently used

• FIFO First In-First-Out → oldest

• Random randomly chosen

Write Strategies (Hit)

• Write through immediately write to memory

• Write back write on before replacement (valid bit needed)

Write Strategies (Miss)

• Write-allocate load line into cache and update line in cache

• No-write-allocate Write immediately to memory

Pascal Isliker Page 13

State Machines

FSM in Hardware

• Flip-flops store internal state

• Clock-driven

▪ Inputs are evaluated at each clock edge

▪ State can only change on a clock

FSM in Software

• Responds to external events

▪ Event driven

▪ Only evaluate the FSM if an input changes

• Internal state

▪ Memory of what happened before

• Actions

▪ Influence the outside world

• Each event may or may not

▪ change the internal state

▪ trigger actions

Modeling State Machines

• State Internal state of the system in which it is awaiting the next event

• Transition Reaction to an event: May change state and/or trigger an action

• Event Asynchronous input that may cause a transition

• Action Output associated with transition

Rules for UML

• Every state-diagram must have an initial state

• Each state must be reachable through a transition

• State diagram must be deterministic

Semantics

• Only reacts to events from the outside

• Always has a defined state

• Reaction to an event depends on the current state

• Once started a transition cannot be interrupted

Events queues

• Collect events generated by different objects

• FSM processes one event after another Implementation

Pascal Isliker Page 14

Interrupt Performance

Polling

Advantages Simple and straightforward, Implicit synchronization,

Deterministic, No additional interrupt logic required

Disadvantages Busy wait → wastes CPU time, Reduced throughput,

 Long reaction times

Interrupt Performance

• 𝑓𝐼𝑁𝑇 Interrupt frequency How often does an interrupt occur

• 𝑡𝐼𝑆𝑅 Interrupt service time Required time to process an interrupt

▪ 𝑡𝐼𝑆𝑅 > time between two interrupt events → Some interrupts will be lost

• 𝐼𝑚𝑝 = 𝑓𝐼𝑁𝑇 ∙ 𝑡𝐼𝑆𝑅 Percentage of CPU time used to service interrupts

•
Interrupt Latency

• 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 Time between interrupt event and start of servicing by ISR

• Influenced by HW Instructions have different execution times

• Influenced by SW

▪ Saving additional registers on stack…

▪ Interrupts with higher priority

• 𝑓𝐼𝑁𝑇 too high → Too many interrupts

▪ No CPU cycles left for data processing

Example – Interrupt Priorities

Fast response times – low latency

• Fast CPU High clock rate / low number of cycles per instruction

• Extremely short polling loops can be fast

• Pre-emption with appropriate priorities

Managing Latency

• High prio interrupts may cause high latencies for low prio interrupts

• Remedy: Move “waiting loop” to main program

• Move non-time-critical work from ISRs to main loop

