Microcontroller Basics

Signal Groups
Data lines

e 8,16, 32, 64 parallel lines of data
e Bidirectional (read / write)

Address lines

e Unidirectional: From master to slave
e Number of lines — size of address space

Control signals

e Control read / write direction
e Provide timing information

master slaves
1 A

peripherals

CPU Memory (I/0)

I I I

Data Lines
Address Lines

Timing Options

Synchronous

e Master and slave use a common clock
e Clock edges control bus transfer on both sides e Control signals carry timing information to allow

e Used by most on-chip busses

e Off-chip: DDR and synchronous RAM

CLK

slave

i

master

Asynchronous

e Slaves have no access to the clock of the master

synchronization
e Widely used for low data-rate off-chip memories

master slave

own clock or
no clock at all

Control Signals

Accessing Control Registers in C

dereference poinmr—"' cast
#idefine LED31 0_REG (*((velatile uint32_t *) (0x60000100)))
#define BUTTON_REG (*((volatile uint32_t *) (0x60000210)))

// Write LED register to OxBECC'DDEE
LED31_0_REG = OxBBCCDDEE;

// Read button register to aux var
aux_var = BUTTON_REG;

Slow Slaves

e Wait states are inserted depending on the address of an access

Reading a Slow Slave
3 Wait States

T T2 T3 TW | TW TW | T4

TS |

Reading a Fast Slave
No Wait State

T6 0TI | T2 [T3 | T4 TS5 T

A[31:0] | 0x6000'0000 |

)@(Oxvuoc-oboi)@
T

NE \ : | \
NWE T T ‘ :
NOE \ : H
D[31:0] {7} Py
[0xARBE ' cCDD OXEEFF'1122

Pascal Isliker

Page 1

Microcontroller Basics

Block Diagramm

e Address lines A[31:0]

1 CLK
NE
NOE
NWE
A[31:0]

Slave 1

Control Bits Status Bits
e Allow CPU to configure slave e Allow CPU to monitor slave
e CPU writes to register bit e Slave write into register bit
e Slave uses output of register bit e CPU reads register bit
e Usually read/write e Usually read-only

T T2 | T3 | T4 | TS

A[31:0] 0x2100' 0248 :

[] Data lines D[310] D[31:0]
Master
e Control (CPU) o —
= CLK Clock o
= NE Not Enable s Ve 2
= NWE Not Write Enable —
* NOE Not Output Enable e
Timing Diagram
= Write D[:] to A[:]: NE=0, NWE=0
= Read D[:]fromA[:]: NE=0,NOE =0
Write i Read

NWE \ | |
NOE ;
D[31:0] S

0xB899 ' AABE|

CPU writes 0x8899'AABB |
to address 0x2100'0248

LDR RO ,=0x2100'0248
LDR R1,=0x8899'AABB
STR R1, [RO]

[oxccoD 'EEFF|

CPU reads 0xccDD ' EEFF
from address 0x2100'134C

LDR RO,=0x2100'134C
LDR R1,[RO]

Assuming that the memory contains this vaie

Bus Access Size is determined by the NBL (0 - 3) (No Byte Line) signals.

e NBL =1 — Byte used for Read / Write
e NBL[0:3] =0011 — Read Half-Word
e NBL[0:3] =0010 — Read Byte

Address Decoding

Interpretation of address line values. See wheather bus access targets a particular
address or address range.

Full Address Decoding

e All address lines are decoded
e A control register can be accessed at exactly one location
e 1:1 mapping — A unique address maps to a single hardware register

Partial Address Decoding

e Only a sub-set of the address lines is decoded

e Detects an address range or a set of addresses

e N:1 mapping — N unique addresses map to the same hardware register
e Map a hardware register to several addresses

Full Address Decoding Partial Address Decoding
all addresses e.g. only high addresses e.g. high and low addresses
Ay~
Az~ Az
....Address-_’ -Address-_. select Ay ——
sel
A; ™ decoder As —*| decoder __|Address-| ¥
Ay Ag 1 Ar=R2 | decoder
Bty A
A —
N NN
0x4000'8234—— select Ux400018.2 0x4000 ' 8200
elect
0x4000 ' 82; 0x4000 ' B2FF
SN RZaaN

Pascal Isliker

Page 2

GPIO - General Purpose Input / Output

Register address = Base address + Offset

e Offset is given for each register in reference manual
e Base address defined in memory map (reference manual)

G PI O Boundary address Peripheral
‘wﬂ? 2800)0x4002 2BFF GPIOK
0x4002 2400 - 0x4002 27FF GPIOJ
S|tuat|on 0x4002 2000 - 0x4002 23FF GPIOI
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
e Microcontroller as general-purpose device D02 1400 DOUZ TFF || GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
e Many functional blocks included (A0 000 G0z OFFF | aP0D
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
P r‘o b Ie m 0x4002 0000 - 0x4002 03FF GPIOA

e Limited number of pins
e For a specific configuration, not all functions can be routed to I/O pins

Solution

e Many (all) pings are configurable

e Select the needed I/0 pins / functions

e «pin sharing»

e QOutput multiplexer needs to be configured

Configuration Registers

e GPIOx_MODER[1:0] Direction e.g. Input, Analog mode, ...

e GPIOx_OTYPER[0:0] Output type Push-Pull / Open-Drain (Low)
e GPIOx_PUPDR[1:0] Pull-Up / Pull-Down

e GPIOx_OSPEEDR[1:0] Speed Low, Medium, ...

Setting and Clearing Bits - GPIOx_BSRR

e (0-15 Set Bits Set port bit by writing a ‘1’ to BSRR[bit]
e 16-31 Clear Bits Clear port bit by writing a ‘1’ to BSRR[bit+16]
e Ensures atomic access in software (no interruption possible)

Data operations

Read register GPIOx_IDR
Write register GPIOx_ODR or GPIOx_BSRR

e |nput
e Qutput

Structure

analog input
—

¢ alternate input (e.g. to SPI, UART, ...)

idr_read_enable Input data - IDR 1)
—(—%—oﬂ—q D ;@I
J_ R

/O Pin

D
odr_write_enable ———————E
clk >

odr_read_enable Q

alternate output (e.g. from SPI, UART, ...)

Output data - ODR

\[ﬁa

iPUPDR[1:0]}

Direction - MODER[0]

moder_write_enable

clk

single data bus line

Vomo
)

¢

i

PUPDR[1:0] are addiionsl
in a simpiied way

Hardware Abstraction Layer (HAL) | #define ADDR (* ((volatile uintXX_t *) (0x40020000)))

‘#define GPIOA MODER (*((volatile uint32_t *) (0x40020000)))

Accessing a register

e Each GPIO port has the same 10 registers
e There are 11 GPIO ports = GPIOA — GPIOK

reg_stm32f4xx.h

Base addresses

__Tregister names as
._— inreference manual

Pointers to struct of type reg_gpio_t

Ty

(
(
(
(
(
(
(
(
(
(
(

~~ size of registers

/7 all output

GPIOA->MODER = 0x55555555;

Pascal Isliker

Page 3

Serial Connection — Overview / SPI

only higher layer addressing

parity bit possible
chip-to-chip, PC terminal program

slave selection through S signal
no error detection

chip-to-chip, on-board connections
connections

interpret the transferred data.

12C — Inter-Integrated Circuit

e Synchronous half-duplex transmission (SCL, SDA)
e 7-bit slave addresses

7/10-bit slave address
no error detection
chip-to-chip, board-to-board

serial ports (RS-232) 4-wire bus 2.wire bus

TX, RX opt. control signals MOSI, MISO, SCLK, S8 SCL, SDA

point-to-point point-to-multipoint (multi-) point-to-multi-point
full-duplex full-duplex half-duplex

asynchronous synchronous synchronous

The three interfaces provide the lowest layer of communication and require higher level protocols to provide and

UART - Asynchronous Serial Interface

SP| —Serial Peripheral Interface

e Master / Slave

e Transmitter and receiver use diverging clocks
e Synchronization using start/stop bits — overhead
e Longer connections require line drivers — RS-232/RS-485

e Synchronous full-duplex transmission (MOSI, MISO)
e Selection of device through Slave Select (SS)

e No acknowledge, no error detection
e Four mode — clock polarity and clock phase

Single Master — Multiple Slaves

e Master generates a common clock signal for all slaves
e MOSI From Master Output to all Slave Inputs
e MISO Allslave outputs connected to single master input
e Slaves
* Individual select SS1,552,5S3
» SSx ="1' - Slave output MISOx is tri-state

SCLK SCLK
MOS| » MOSI SPI
SPI MISO < MISO Slave
Master SS1 53
552
3
t—# SCLK
MOs| SPI
MISO Slave
| SS
—{ 5CLK
— MOS| SPI
MISO Slave
55

Clock Polarity (CPOL) and Clock Phase (CPHA)

TX provides data on ‘Toggling Edge’
RX takes over data with ‘Sampling Edge’

Toggling edge
Mode 0 ‘ I
CPOL=0 &
CPHA=0 —J \—/ —
Sampling edge

K |die leve

Toggling edge
Mode 2
CPOL=1

CPHA=0 e

Sampling edge

Toggling edge
Mode 1
CPOL=0
CPHA=1 —— ity

Sampling edge

Toggling edge

Mode 3
CPOL=1
CPHA =1

Sampling edge

Pascal Isliker

Page 4

Serial Connection - SPI

Properties

e No defined addressing scheme
= Use of SS instead — KISS
e Transmission without receive acknowledge and error detection
= Has to be implemented in higher level protocols
e Originally used only for transmission of single bytes
=SS deactivated after each byte
= Today also used for streams
e Datarate

Example

Ein Prozessor (SPI Master) sendet das Byte 0x3D = 0011 1101. Die Schnittstelle ist wie

folgt konfiguriert:

Mode = 3, CPOL =1, CPHA = 1,

MSB — First

5] |

. 5CLK
= Highly flexible as clock signal is transmitted l_+
e No flow-control available | - {
= Master can delay the next clock edge 9 g d 1 ! ! | ¢ !
= Slave can’t influence the data rate
e Susceptible to spikes on clock line
Synchronizing Hardware and Software
e TXE TX Buffer Empty Software can write next TX Byte to register SPI_DR
e RXNE RXBuffer Not Empty A byte has been received. Software can read it from SPI_DR
= Transmitting in Software e v, e e | = Receiving in Software o e i
* Example: SW wants to transmit bytes 0xF1, 0xF2, 0xF3 * Example: SW receives bytes 0xA1, 0xA2, 0xA3
oL i i L L LT SR
= | [= —
mosi—|_| Transmissionof axF1 [Transmissionfof 0xF2 | | | Transmissionfat aFs | L
MISO lion of 0xA1 option of 0xA2 of 0xA3
TXE fiag T-I_I?‘ Set by hantware, cleared by wifing fo SPI_DR Wl—l Sel by hardware
TX buffer | P | = | = RXNE flag Set by hardware x[_] Cleared by reading from SPI_DR Pl P
! r ke RX buffer — [oxat /'/l 0xA2 [oxa3
BSY flag | ‘Set by harhwsre Reset by hardware |_ // ~
AN -~ /
. ST':')?E_a.l::jIE\SII::;I . ";Bd?;lasgrgl:;:gwlt::‘e Software waits until Software waits until Software waits until
0xF2 into SP1 DR that transmission has RXNE=1 and reads RXNE=1 and reads RXNE=1 and reads
:) completed 0xA1 from SPI_DR 0xA2 from SPI_DR 0xA3 from SPI_DR

Pascal Isliker

Page 5

UART /12C — Universal Synchronous Receiver Transmitter / Inter-Integrated Circuit

Universal Asynchronous Receiver Transmitter — UART

Connecting shift registers with diverging clock sources

data

Same target frequency

and

Different tolerances and divider ratios
Requires synchronization at start of each data item in receiver

UART Timing

Transition stop (‘1’) — start (‘0’)

Receiver detects edge at the start of each data block (5 to 8 bits)
Allows receiver to sample data «in middle of bits» — red edges
Clocks have to be accurate enough to allow sampling up to parity bit

5 - 8 Bits of Data (LSB first)

Idle - logic 1"
stop = logic'1'
start - logic '0'

1 0 |parity stop|start 0

UART Characteristics

Synchronization

= Each data item (5-8 bits) requires synchronization
Asynchronous data transfer

= Mismatch of clock frequencies in TX and RX

= Requires overhead for synchronization — additional bits
= Requires effort for synchronization — additional hardware

Advantage
= Clock does not have to be transmitted
= Transmission delays are automatically compensated
On-board connections
= Signal levels are 3V or 5V with reference to ground
= Off-board connections require strong output drivers

12C Bus - 12C — Inter-Integrated Circuit ‘\W\‘\ﬁ T\;

e Bidirectional 2-wire E E
Clock >SCL Data — SDA g e g

e Synchronous, half-duplex %L — et
e Each device on bus addressable i \ / 3
e 8-bit oriented data transfer ‘< ‘:\\:
e Different bit rates up to 5 Mbit/s
e Suited for connection of multiple boards
e Multi-master possible

12C Bus — Operation N ﬁ_ﬁ\J\I_ﬁ

e Master drives clock line (SCL)

e Master initiates / terminates transaction through START / STOP condition

12C Bus — Driving Data on SDA

e Data driven onto SDA by master or by addressed slave
= Depending on transaction (read/write) and point in time

= Change of data only allowed when SCL is low
= Allow detection of START and STOP condition

12C Bus — Data Transfer on 12C

e 8-bit oriented transfers
e Bit 9: Receiver acknowledges by driving SDA low
e Master defines number of 8-bit transfers (STOP)

Example: Ein Baustein soll zum lesen adressiert werden (7-Bit: 0x56)

Adresse (7 Bit) Read | Ack

0 i 1 [1 o

soa |

Pascal Isliker

Page 6

Timer / Counter

Binary up-counter or down-counter

e Counts events / clock pulses or external signals
e Qutput after a defined number of events

e Timer: counting clock cycles or processor cycles
e Counter: counting events

e Count events Measure of time, frequencies, phases, periods
e Generate intervals, row of pulses, interrupts

Down-counting mode

D e FromARRtoO
ompare

Up-counting mode

e FromOto ARR
e Restarts from 0

H
El
=

]

=
e}

c

5
o

@

o
T
o

e Restart from ARR

S e Generates underflow
Counter

e Generates overlow

Function

e Configure in up- or down-counting mode
e Select source

e 16-bit / 32-bit counter register

e Setinterrupt flag — trigger interrupt

Prescaler

e Increase counting range
e Count only every n-th event

Insert-Capture

e Measuring intervals — puls lengths and periods
— Counts ticks between timer start and an event

Pulse-Width-Modulation PWM
L On ,LOfY,I
Vi

Duty Cycle
v, ®) I

Duty Cycle — Definition

L

Dutv Cvel On Time
u cle=——— .
y y PeTiOd Pﬁrmd (T .|

Internal

Average signal clocks
J'n;._wr

Vavg:D'VH+(1_D)'VL ;:5

timers

Compare function produces PWM signal

e Toggle output pin when counter reaches CCR
e Mode=1: UP:CNT <CCR DOWN:CNT < CCR
e Mode=2: UP:CNT =CCR DOWN:CNT > CCR

ARR
Auta Reload Hegister
select g @
& |Compare
Ed = — Update
3 2 S 3 Interrupt
©°F Flag
pulses Prescaler ticks = Counter clear / overfiow UIF interrupt
pulses/n
Capture /Compare
M Interrupt Flag
Input pins cc CCIF
is I} R Vc interrupt
Cther sources Eve.r:t Capture { Compare Register |
captun DCxREFl—' Output Qutput pin
Output configuration —s{ Control /
PWM-signal

Pascal Isliker

ADC / DAC

ADC - Analog to Digital Converter

Analog Vaoltage Digital value ,

Vmax m-r

10—

e Converts input signal (voltage) to a digital value (N-bit) P e
e Conversion results in one of 2V possible numerical levels N
e Raw input signal can be dynamic or static

Sampling interval

»= Dynamic signhal (green) sampled at specific time intervals , < |
= Samples transformed into series of discrete values (blue) Time
Input signals Quantization error
. . . V.'. - V.'.+ —_ Vln- . . o Ideal 3-bit ADC
o Differential inputs e Continuous — Discrete
e Vin, signal to convert (non-inverting input) e Introduces an error between -0.5 and +0.5 LSB -
e V;,_ signal to convert (inverting input) Quantization error can be reduced by reducing LSB, —
e.g. either by increasing number of bits (resolution) I F v
. or by reducing Ve ™y s e T
Signal ended mode Analog i | Ves: _ wsiss | R
alog inputs Reducing Vg also reduces full scale range PEPPESP—
| — > -0.5LS8
V) —
° Only V: used Cannect to ground B = Digital
y- m+ for single ended | ADC [outputs Offset error (zero-scaler error) —— p—
e V,_isgrounded Vi, > (N bits)
— a1t

Ideal 3-bit ADC

e Deviation of real and ideal N-bit ADC at input point zero | «
e Ideal: First transition at 0.5 LSB above zero
e Internal or external stable voltage ‘Vin = (digital value) * Vegr, /(2V) e Can be corrected using the microcontroller

Reference voltage Vppr.

010 Real 3-bit ADC
¢ Needed to weight input voltage Measuring the offset error: r)
Digital value — Zero-scale voltage is applied to analog input and is o e s & T 5
. S s o increased until first transition occurs
RESO|utI0n " Ideal 3-bit ADG L
110 .
ber of b - Gain error
e Number of bits N }
100 -
e Size of digital word ot — e Indicates how well the slop of an actual transfer function matches the slope
o e —— of the ideal transfer function B
LSB d 1 LSB S V / ZN 001 - z 1LsB X DWil.nh.rllw +25158
= "REF o0 & v, e Expressed in LSB or as a percent of full-scale range 1 | mer s
1 2 3 4 5 6 7 8
Full Sale Range (FSR) b e Calibration with hardware or software possible -
. .. full-scal = offset + gai o1 Ideal 3-bit
e Range between analog levels of min. and max. digital codes | fullscele error = offse ertor + gain error , sous00
e Vgggr isone LSB less than Vippp .

Pascal Isliker Page 8

ADC / DAC

DAC - Digital to Analog Converter

e Converts N-bit digital input to analog voltage level
e Music from your MP3 player is read and converted back to sound
= Aseries of different values in the digital domain leads to a
series of steps in the analog domain.
= «Play-back» time depends on time between conversions

Output signal V,,,;

e Analog output
= Unipolar (only positive)
= Bipolar (positive or negative)
e Conversion yields approximation of digital signal

Reference voltage Vyer

e Accurate reference voltage
e Needed to relate digital value to a voltage

ADC Example 1
Ein externes analoges Signal soll digital abgetastet werden.

Bei einer maximalen Referenzspannung von Vg, = 4.5V soll eine Abtast-Auflsung
von mindestens 5mV erreicht werden.

Wie viele Bits werden mindestens fiir die Analog-Digital Wandlung bendtigt.

4.5V
0.005V

=900, log,(900) = 9.8 - 10 Bit

ADC Example 2
Gegeben ist ein 3-bit ADC. Die Referenzspannung Vpgr = 8V festgelegt.

In welchem Spannungsbereich bewegt sich der Quantisierungsfehler?

VREF 8V
1LSB :2_’\’ :? = 1V

Der Quantisierungsfehler betragt + 0.5 LSB — + 0.5V

Digital value

m
Ideal 3-bit ADC

110 RN OB
101 Tu —

100
o1
010

001

, v
000 ",

Pascal Isliker

Page 9

Memory

Ubersicht Non-volatile Volatile
Holds data even if power is turned off. Looses data when power is turned off.
e PROM — Programmable Read-Only Memory PROM EEPROM SDRAM
. Programmable Read Only Electrically Erasable Synchronous Dynamic
e EEPROM - Electrical Eraseable PROM My ERoM R T 2y
e NOR/NAN Flash e s | IR e
e SRAM - Static Random Access Memory " et ogmnea | | e T gndensly
i - Irreversible - Low density interface
e DRAM — Dynamic Random Access Memory programming 3 eipansive - Latency
- Block-wise transfers
= Write Operations (Programming) = Erase Operations

STM32F4xxx

) £ vendors may uss other signsl names
extemnal bus |

> NOE

> NWE

CPU g » FMC NE[2]
D —_ A[14:0]

extemnal SRAM device

Static RAN

t (SRAM)
Flip-flop/latch

LAM) chrono ynamic
- 4 Transistors [2 resistors

Transistor and capacitor
bit line

word line I

word line -
Large cell Small cell

= Low density, high cost = High density, low cost

= Up to 64 Mb per device = Upto 4 Gb per device
Almost no static power consumption Leakage currents

* Salie i, no sceeeses king ploce * Peguires pariodiz refrech

Asynchronous interface (no clock)
= Simple connection te bus

Synchronous interface (clocked)
» Requires dedicated SDRAM Controller

All accesses take roughly the same time
= =5ns per access = 200 MHz
= Suitable for distributed accesses

Long latency for first access of a block
= Fast access for blocks of data (bursts)
+ Large overhead for single byte

* (Can only change bits from "1" to '0’
- Otherwise an erase operation is required

* Word, half-word or byte access possible

* Writing a double word ~16 us
- lL.e. around 1000 times slower than SRAM

1111
+ write

1010
1000 =
erase

1011

* Change all bits from 0" to "1’
- Only possible by sector or by bank, not on

a word

- Typical sector sizes of 16

Erase of a 128 Kbytes

between 1 and 2 seconds "
Endurance: 10'000 erase cycles 2

Sector may not be accessed (write or read)

during erase

- L. execute program from another sector or
from SRAM during erase

sector takes

1} Depending on supply d
2} Value from STMAZFAZE2) datasheet

NOR Flash NAND Flash

Topology

-
o
5

o

Applications |+ Execute code directly from

.

File-based 10, disks

memaory « Large amounts of sequential data
» Persistent device configurations (images, SD cards, SSD)
(replacement of EEPROM) » Load programs into RAM before
executing
Density « Medium Upto 2 GBit = 256 MByte |« High Upto 1 Thit

Interface * Read same as asynchronous SRAM
Types with serial interface available

Special MAND flash interface
Error correction for defective blocks

Random access
read ~0.12 ps

Writing individual bytes possible
Slow writes

~180 ps / 32 Byte

Slow random access

read: 1. Byte 25 s,

then 0.03 ps each
Writing of individual bytes difficult
Fast block write

~300 ps [2'112 Bytes

Pascal Isliker

Page 10

Cache

Definition

e Computer memory with short access time
e Storage of frequently / recently used instructions / data

Memory > larger, slower, cheaper

CPU L3 Main
L1 Data Cache Ny
Registers Cache 16-32«B/ = DDR.
- Cache -
= 7 SRAM 4 sDRAM
L1 Instruction 512KB 16MB
Cache 163248 2GB

Harvard architecture
inside on L1 cache

Von Neumann architecture
outside of CPU

Principle of locality

e Spatial locality likely close to next accessed location

e Temporal locality likely being accessed again in near future

Memory blocks

e Address range is partitioned into memory blocks
e Cache is guessing which blocks the CPU will need next
e Selected blocks copied to faster cache memory

Block 3
(Block 4
] Block 5
Block 6
[Block2 || ks
Copy block 2
[Block 1] [Biock 22|
| C—
cPU Cache Copy blocks Memory
e Cache hit Requested block is in cache

e Cache miss Requested block is not in cache

Organization - Fully associative Block | Address | o B9 | offser
0x0004 | 0000 0000 0000 01 00
e Tag contains complete block identification Block 1 00005 | 0000000000001 | O
0x0006 | 0000 0000 0000 01 l
e Any cache line can load any block 0:0007_|100000060000001 | g
Address from processor
tag \
s 2 16 bit add|
e ke w
m comparators .H o v —] 14 bit 2 bit
[=1] tag [v
Byte selector
i 'f
Organization - Direct mapped mock | naarss | o Boek o
. . . L. . 0x0004 | 0000 00| o0
e Block identification split into tag and index 0x0005_| 0000 00 o
Block 1
. . 0x0006 | 0000 00) 10
e Each block is mapped to exactly one cache line wooar | |
e Multiple memory blocks mapped to the same line
Address from processor
16 bit address

from processor

Lineo ||| tag [v] data
Line 1 ([tag v] data

° Line m-1|{[tag |v]
T
o

Asingle comparator check if valid
checksif data with bit s sel
tag is in cache

Byte selector
s

Organization - N-way set associative
Block

e Partition into sets

Block 1
Address from processor

Line 0
Lne 1

tag
tag

v
v

data

data

unez [tag |v] data]

unes | tag |v| data |
]
]

16 bit address

fmema tag |v| data
Linem-1 [tag |v| data
T ¥ ¥ ¥ ¥

n comparators
check f data with
tag is in cache

check if valid
bitis set

from processor

Address

0x0007
0x0006
0x0005
0x0004

7 bit

8 bit

Block
identification bits

0000 000010000101
0000 00001000001
0000 00001000001

0000 000f

7 bit

2 bit

Pascal Isliker

Page 11

Cache

Cache miss
. . Organization Fully associative Direct ma d MN-way set associative

e Cold miss first access to a block - . oL -

e Capacity miss Working set larger than cache Number of sets 1 m m/n

e Conflict miss Multiple data objects map to same slot

Associativity m(=n) 1 n
Performance
+ Fast, flexible L e)
e Hitrate hits / accesses + Highest hit rates Simple logic
)] . + Replacement strategy
e Miss rate misses / accesses = 1 — hit rate Advantages * Advanced defined by
o . . replacement oraanization Combination of both
e Hittime Time to deliver a block from cache to processor strategies g other concepts
e Miss penalty Additional time to fetch from memory (miss) - to combine advantages
* Complex logic: one and to compensate
- comparator per line disadvantages
Replacement Strategies Disadvantages |~ heduireslargearea | o o hit rates
on silicon
e LRU Least recently used * Replacement can be
complex

e LFU Least frequently used

e FIFO First In-First-Out — oldest

e Random randomly chosen

Write Strategies (Hit)

e Write through immediately write to memory
e Write back write on before replacement (valid bit needed)

Write Strategies (Miss)

e Write-allocate load line into cache and update line in cache
e No-write-allocate Write immediately to memory

Pascal Isliker Page 12

State Machines

FSM in Hardware

e Flip-flops store internal state

e Clock-driven
= |nputs are evaluated at each clock edge
= State can only change on a clock

L.

state output
. com_b. registers —¢ °°“‘.b- —
input logic (flip-flops) logic
clock

FSM in Software

e Responds to external events
= Eventdriven
= Only evaluate the FSM if an input changes
e Internal state
= Memory of what happened before
e Actions
= Influence the outside world
e Each event may or may not
= change the internal state
= trigger actions

Implementation)
(state) {

STATE_X:
(event) {
EVENT_X:
state = STATE_Y;

handle_action("AC

»

Modeling State Machines

e State Internal state of the system in which it is awaiting the next event
e Transition Reaction to an event: May change state and/or trigger an action
e Event Asynchronous input that may cause a transition

e Action Output associated with transition

—>» State X —event/action—» StateY

Rules for UML

e Every state-diagram must have an initial state
e Each state must be reachable through a transition
e State diagram must be deterministic

Semantics

e Only reacts to events from the outside

e Always has a defined state

e Reaction to an event depends on the current state
e Once started a transition cannot be interrupted

Events queues

e Collect events generated by different objects
e FSM processes one event after another

Pascal Isliker

Page 13

Interrupt Performance

Interrupt Performance

Interrupt frequency
Interrupt service time

* finr

* iR

e Imp = finr-tisk

How often does an interrupt occur

Required time to process an interrupt

= t;gg > time between two interrupt events — Some interrupts will be lost
Percentage of CPU time used to service interrupts

t\SR

ISR ISR
main()

A A § ‘

Time between
interrupt events

Interrupt Latency

b tlatency

e Influenced by HW
e Influenced by SW

Saving additional registers on stack...

= Interrupts with higher priority

Time between interrupt event and start of servicing by ISR
Instructions have different execution times

Fast response times — low latency

Fast CPU High clock rate / low number of cycles per instruction
Extremely short polling loops can be fast
Pre-emption with appropriate priorities

Managing Latency

e High prio interrupts may cause high latencies for low prio interrupts

Ystency B
S
- ISR e Remedy: Move “waiting loop” to main program
A\ . g .
s I8RA \ e Move non-time-critical work from ISRs to main loop
q I N .
main() | { main()
j 1 A has higher priority than B t %_1'3'! 1‘:> p _il'SR 2 %:1 gj’:;
_ _ wmntvem write event wrhtvu
. A - stat to queue to queue 1o queue
e finr too high = Too many interrupts R (\ji'!uf@:.,?, o — -’i?i}etm;_’:'/‘
. v) -
= No CPU cycles left for data processing e T I
) , ! | ! : |
. oy = e
Example — Interrupt Priorities - =
— . true
~ _If (event) ———= fsm_handle_event(event) ‘
IRQO request N assuming Fafsel -
IRQ0 PLO=0x2 medium priority

1P0 pending —|T| IRQ1 PL1=0x3 lowest priority

IRQO active] IRQ2 PL2=0x1 highest priority

IRQ1 request N Po"lng

IP1 pending] IRQ1 has high latency

a1 sctive CI—I_ Advantages Simple and straightforward, Implicit synchronization,

IRQ2 request o . . oy e . . .

~y
2 pencing l?l PP Te— Deterministic, No additional interrupt logic required
IRQ2 active —|—| . . .
Disadvantages Busy wait — wastes CPU time, Reduced throughput,
[main) | ISRO ISR2 ISRO ISR1 main() . .
Long reaction times
Pascal Isliker Page 14

