MRT Summary

Philip Csurgay, MT21-a1, csurgphi

PT1 Systems

Input step function at steady state: $K_{s}=\frac{\Delta \widehat{x_{a}}}{\Delta \widetilde{x_{e}}}$

Laplace
Operator: $s=\frac{d}{d t}$ Operator: $\frac{1}{s}=\int$
Initial value theorem

$$
f(0)=\lim _{s \rightarrow+\infty} s F(s)
$$

Final value theorem

$$
\lim _{t \rightarrow+\infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

Impulse function $\quad \mathcal{L}\{\delta(t)\}=1$ \qquad

Step function

$$
\mathcal{L}\{\sigma(t)\}=\frac{1}{s}
$$

\qquad

Sine function

$$
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
$$

Further Laplace transforms: Papula p. 358
Laplace inverse

- The inverse Laplace transformation is the reverse transformation from the image function to the time function.

$$
\mathcal{L}^{-1}\{F(s)\}=f(t)=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} F(s) e^{s t} d s \quad F(s) \multimap f(t)
$$

1) The analysis of dynamic systems usually starts with differential equations which describe the behaviour of a control system.
2) The original differential equations are transformed into image functions, then integral and differential calculations can be performed as algebraic calculations.
3) When the final result in the image function is found, it can be transformed back to time domain (original form) using the inverse Laplace transformation.
Differential Equation (DGL)

Frequency Domain

> Input Signal $U(s)$ $\&$ Laplace Transformation der $\operatorname{DGL} G(s)$

Transfer function

For PT1 Systems: $G(s)=\frac{K_{S}}{T_{1} s+1}$
For PT2 Systems: Mass damper

Generally for PT 2 :
$\left(a_{2} s^{2}+a_{1} s+a_{0}\right) X_{a}(s)=\left(b_{1} s+b_{0}\right) X_{e}(s)$

$$
G(s)=\frac{X_{a}(s)}{X_{e}(s)}=\frac{b_{1} s+b_{0}}{a_{2} s^{2}+a_{1} s+a_{0}}
$$

$G(s)=\frac{\text { Laplace transformation of output signal } \quad X_{a}(s)}{\text { Laplace transformation of input signal } \quad X_{e}(s)}$

Time constant	$T_{v p}=-\frac{1}{p_{v}}$
	(no particular meaning)

meaning)

$$
K_{S}=\frac{b_{0}}{a_{0}}
$$

PT2 Parameters

$0 \leq \xi<1$

$$
x_{a}(t)=K_{s} \hat{x}_{e}\left(1-\frac{\omega_{n}}{\omega_{d}} e^{-\xi \omega_{n} t} \cdot \sin \left(\omega_{d} t+\Phi\right)\right)
$$

$$
\Phi=\cos ^{-1} \xi
$$

$$
\omega_{n}=\frac{\omega_{d}}{\sqrt{1-\xi^{2}}}
$$

Natural Frequency ω_{n}

$$
\omega_{d}=\omega_{n} \sqrt{1-\xi^{2}}
$$

Damped Natural Frequency ω_{d}

Damping Ratio ξ

$$
\xi=\frac{\vartheta}{\sqrt{\pi^{2}+\vartheta^{2}}}
$$

Logarithmic decrement $\vartheta \quad \vartheta=\frac{\pi \xi}{\sqrt{1-\xi^{2}}}$

$$
\begin{aligned}
& \text { (1.4 } \\
& \omega_{d}=\frac{2 \pi}{T_{p}} \\
& \vartheta=\ln \frac{\Delta_{1}}{\Delta_{2}}=\frac{1}{n} \ln \frac{\Delta_{k}}{\Delta_{k+n}} \\
& \xi=\frac{\vartheta}{\sqrt{\pi^{2}+\vartheta^{2}}} \\
& \omega_{n}=\frac{\omega_{d}}{\sqrt{1-\xi^{2}}} \\
& \text { first extreme value } \Delta_{1} \\
& \Delta_{1}=\hat{y} \mathrm{e}^{-\vartheta} \quad t_{1}=\frac{\pi}{\omega_{d}} \\
& \text { at } t_{1}=T_{p} / 2 \\
& \text { at } t_{2}=2 T_{p} / 2 \\
& \begin{array}{l}
k \text {-th extreme value } \Delta_{k} \\
\text { (Over or undershoot) }
\end{array} \\
& \text { at } t_{k}=k 2 T_{p} / 2 \\
& \text { Logarithmic Decrement } \\
& \vartheta=-\frac{1}{k} \ln \left(\frac{\Delta_{\mathrm{k}}}{\hat{y}}\right) \quad \vartheta=\frac{1}{n} \ln \frac{\Delta_{k}}{\Delta_{k+n}} \\
& \text { Time constant } T_{1} \\
& T_{1}=\frac{2 \xi}{\omega_{n}} \\
& \text { for } 0 \leq \xi<1 \\
& \text { Time constant } T_{2} \\
& T_{2}=\frac{1}{\omega_{n}}
\end{aligned}
$$

TF Representations
Time-const. representation: $G(s)=\frac{K_{S}}{\left(s T_{1}+1\right)\left(s T_{2}+1\right)}$
Polynomial repr.:

$$
G(s)=\frac{K_{S} \omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}
$$

Pole-zero repr.:

$$
G(s)=\frac{K_{S} \omega_{n}^{2}}{\left(s-p_{1}\right)\left(s-p_{2}\right)}
$$

Polynomial representation

$$
G(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}}
$$

Pole-Zero representation

$$
G(s)=k \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)} \quad \text { mit } k=\frac{b_{m}}{a_{n}}
$$

Time constant representation
$G(s)=K_{S} \frac{\left(T_{1 z} s+1\right)\left(T_{2 z} s+1\right) \cdots\left(T_{m z} s+1\right)}{\left(T_{1 p} s+1\right)\left(T_{2 p} s+1\right) \cdots\left(T_{n p} s+1\right)} \quad K_{S}=\frac{b_{0}}{a_{0}} \quad T_{v p}=-\frac{1}{p_{v}} \quad T_{v z}=-\frac{1}{z_{v}}$
Summation representation

$$
G(s)=\underset{\sim}{k}+\frac{r_{i}}{S_{I}^{s}}+\frac{r_{k}}{\underbrace{s-p_{k}}_{P T 1}}+\cdots+\frac{r_{l}}{\underbrace{\left(s-p_{l}\right)^{n}}_{\text {PT } n}}+\cdots+\underbrace{\frac{a_{m} s+b_{m}}{s^{2}+2 \xi_{m} \omega_{n_{m}} s+\omega_{n_{m}}^{2}}}_{\text {PT2 schwingfahig }}+\cdots
$$

Poles and stability

$p_{1,2}=-\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2}-1}$
Case1 $\xi>1 \quad$ Two real poles
$p_{1,2}=-\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2}-1}$
Case2 $\xi=1 \quad$ Doble real poles
$p_{1,2}=-\xi \omega_{n}$

Case3 $\xi<1$ Complex conjugate poles
$p_{1,2}=-\xi \omega_{n} \pm j \omega_{d}$

Case4 $\xi=0 \quad$ Double imaginary poles
$p_{1,2}= \pm j \omega_{n}$
Poles located in the left-hand side \rightarrow System STABLE of the complex plain

Poles located in the right-hand side \rightarrow System UNSTABLE of the complex plain

Conjugated Poles

$\left.h(t)=1-\frac{\omega_{n}}{\omega-\left\{\omega_{n} t\right.}\right)\left(\omega_{d} t+\mathrm{p}\right)$
$p_{1,2}=-\xi \omega_{n} \pm j \omega_{d}$

$p_{1,2}=-\xi \omega_{n} \pm j \omega_{d}$
$p_{1,2}=-\xi \omega_{n} \pm j \omega_{d}$
Time within a tolerance band $\pm x \%$

Linear Systems

Static Gain

Transfer functions
The Laplace-Transformation of a step function with amplitude \hat{x}_{e} is: $\quad X_{e}(s)=\frac{x_{e}}{s}$

Thus, the Laplace of the output is: $X_{a}(s)=G(s) X_{e}(s)=G(s) \frac{\hat{x}_{e}}{s}$ According to the final value theorem of Laplace
$\lim _{: \rightarrow \infty} X_{a}(t)=\lim _{s \rightarrow 0} s X_{a}(s)=\lim _{s \rightarrow 0} s G(s) \frac{\hat{x}_{e}}{s}=\lim _{s \rightarrow 0} G(s) \hat{x}_{e}=G(0) \hat{x}_{e}=K_{s} \hat{x}_{e}$
For a transfer function given by: $G(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}}$
Static gain:
$K_{s}=\lim _{s \rightarrow 0} G(s)=G(0)=\frac{b_{0}}{a_{0}}$
Proportional behaviour (P-element):

$$
a_{0} \neq 0 \text { und } b_{0} \neq 0: \quad K_{s}=\frac{b_{0}}{a_{0}}
$$

Integral behaviour (l-element):

$$
\begin{aligned}
& \quad a_{0}=0 \text { und } b_{0} \neq 0 \\
& \text { Differential behaviour (D-element): }
\end{aligned}
$$

$$
K_{s}=\infty
$$

$$
a_{0} \neq 0 \text { und } b_{0}=0
$$

$$
K_{s}=0
$$

Series functions
The series connection of " n " PT1 elements is called PTn element.
The next figure shows the block diagram for a PT3 element, each block contains one PT1 element.

Each PT1-element has the same time constant, as result the new system has $T_{m}=\frac{1}{n} \sum_{i=1}^{n} T_{i}$ also known as the mean time constant.

Step response of PTn Systems

Mean time constant $\boldsymbol{T}_{\boldsymbol{m}}$
There are two methods to find T_{m} :

- Method of the tangent at turning point
- Method of the time-percentage characteristic value

Tangent at turning point
Reading data from the previous page:

$$
G(s)=\frac{K_{S}}{\left(T_{m} s+1\right)^{n}}
$$

Order	n
Static gain	K_{S}
Mean time-constant	T_{m}
Time Delay	T_{u}
Compensation Time	T_{g}

n	$\frac{T_{g}}{T_{u}}$	$\frac{T_{g}}{T_{m}}$	$\frac{T_{u}}{T_{m}}$
2	9.71	2.72	0.28
3	4.61	3.69	0.80
4	3.14	4.46	1.42
5	2.44	5.12	2.10
6	2.03	5.70	2.81
7	1.75	6.23	3.55
8	1.56	6.71	4.30
9	1.41	7.16	5.08
10	1.29	7.59	5.87

Time-percentage characteristic value

1. Break up the step response by the y-axis:

Sprungantwort:

2. Find the time at the intersection of the percentage values: $\frac{t_{10}}{t_{50}}=\frac{t_{i}}{t_{k}}$ or $\frac{t_{10}}{t_{90}}=\frac{t_{i}}{t_{k}}$
3. Determine the order of the system:

4. Calculate the mean time constant by utilizing this plot: $T_{M}=$ value $\cdot t_{10}$

Block Diagram algebra

- Series connection
$>\mathrm{G}=\mathrm{G} 1 * \mathrm{G} 2$
- Parallel connection
$\gg G=G 1+G 2$
- Feedback

Feedback
$>=G 1 /(1+G 1 * G 2)$
$\gg G=$ feedback (G1, G2)

- Similar rules as in normal algebra can be used in blocks:
$G(s)=G_{1}(s) * G_{2}(s) * G_{3}(s)$

- If $G_{2}(s)$ is unknown and everything else is known, then:

$$
G_{2}(s)=\frac{G(s)}{G_{1}(s) * G_{3}(s)}
$$

