
Pascal Isliker Page 1

Introduction / What is AI?

Definitions of AI

Acting humanly The Turing test

• Can machines think / behave intelligently?

• Operational test for intelligent behaviour

Thinking humanly Cognitive science

• Understanding the human mind by computer modelling

• Requires scientific theories of internal brain activities

Thinking rationally Laws of thought

• How to make provably correct inference?

• Several forms of logic have been developed

Acting rationally Rational behaviour

• Doing the right thing

(expected to maximize goal achievement, given the available information)

Rational agents

• A practical way and goal of this course

• For any given class of environments and tasks, we seek the agent with the best

performance

Overview

• Introduction

▪ The field of AI

▪ Intelligent agents

• Search

▪ Problems solving through search

▪ Local and adversial search

▪ Constraint satisfaction problems

• Planning

▪ Knowledge reasoning & logic

▪ Datalog

▪ Planning

• Learning

▪ Supervised learning with neural networks

▪ Unsupervised learning with autoencoders

▪ Generative adversarial learning for image synthesis

• Other

▪ Reinforcement learning for game play

▪ AI & society

Example Definition

• AI: The scientific field concerned with generating intelligent behavior by computers.

• Intelligence: The power to solve previously unsolved problems.

Pascal Isliker Page 2

Intelligent Agent

A rational agent

For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by

the percept sequence and whatever built-in knowledge the agent has.

• Agents include humans, robots, softbots, thermostats, …

• The agent function maps from percept sequence to actions 𝑓: 𝑃∗ → 𝐴

• The agent program runs on the physical architecture to produce 𝑓

Rationality

Requires a fixed Performance measure to evaluate environment sequence.

Task Environment = PEAS (Performance, Environment, Actuators, Sensors)

To design a rational agent, we must specify the task environment. PEAS specifies

environment types: how we humans would perceive external features.

PEAS Example: The task of designing an automated taxi

• Performance safety, destination, profits, comfort, legality

• Environment streets/freeways, traffic, pedestrians, weather

• Actuators steering, acceleration, brake, horn, speaker/display

• Sensors video, accelerometers, lidar, GPS, engine sensors

Environmental Properties

• Fully observable vs Partially observable Do sensors give full access to the relevant state of the environment?

• Single agent vs Multiagent Do others optimize a performance measure dependent on our agent?

• Deterministic vs Nondeterministic Do actions have certain consequences, or is the outcome probabilistic (other’s actions don’t count)?

• Episodic vs Sequential Do current actions influence future decisions (probably not in classification settings)?

• Static vs Dynamic Does the world keep turning while our agent decides what to do?

• Discrete vs Continuous Regarding states, time, percepts and actions

• Known vs Unknown Are the rules/laws governing the environment known to the agent?

Examples: Environments and their properties

Pascal Isliker Page 3

Intelligent Agent

Four basic agent types

• Simple reflex agents: select action based on last percept

• Reflex agents with state: regard history

• Goal-based agents

• Utility-based agents

All these can be turned into learning agents!

A representation taxonomy

Consider the representation of any building block

• Atomic states are “just different” from each other

▪ Search, game playing

• Factored states described by vectors (of attributes)

▪ Constrained satisfaction, propositional logic, planning, machine learning

• Structured states as entities and their relationship with each other

▪ First-order logic, first-order probability models, knowledge-based learning

Atomic → Factored → Structured is ordered by expressiveness. A more capable agent (more expressive agent) is not always better.

• More expressive – Advantages: Captures more, often much more concise

• More expressive – Disadvantages: Learning/reasoning becomes much harder

Pascal Isliker Page 4

Problem solving through search

Problem formulation

• Real world is complex → State and Action must be abstracted

• Each abstraction should be easier than the original problem

A search problem can formally be defined as follows

• State space Set of possible states

• Initial state Starting state

• Goal states Possible goal states

• Actions Actions available to the agent

• Transition model Describes what each action does

• Action cost function Function to determine the cost of an action

Diversity of search approaches

• Uninformed (blind) search

▪ All it can do: generate successors of tree-nodes

• Heuristic (informed) search

▪ Knows whether one non-goal state is «more promising»

• Online search

▪ Environments are dynamic

• Local search

▪ Cares only to find a goal state rather than the optimal path

• Adversarial search

▪ Search in the face of an opponent

Strategy building

• Initial state

• Formulate goal

• Formulate problem (states and actions)

• Find solution

8-Puzzle - Problem formulation

• States Describes the location of each of the tiles (e.g. with an Int)

• Actions Move blank: LEFT, UP, DOWN, RIGHT

• Goal states All tiles in order

• Action cost 1 per action

Remarks

Heuristics

• An admissible heuristic is one that never overestimates the cost to reach a

goal.

• Good heuristics can dramatically reduce search cost

Other

• Iterative deepening only uses linear space and not much more time than

other uninformed algorithms

Pascal Isliker Page 5

 Problem solving through search

Uninformed (blind) search

• All it can do is generate successors of tree-nodes

• Distinguish goal- from non-goal states

• Suitable environments: fully observable, deterministic, discrete

Approach

• Tree search Iteratively expand nodes until a goal node is hit

• Different Strategies Order of node expansion

Evaluation criteria for strategies

• Completeness does it always find a solution if one exists?

• Optimality does it always find a least-cost solution?

• Time complexity number of nodes expanded/generated

• Space complexity maximum number of nodes in memory

Time and space complexity are measured in terms of

• 𝑏: Maximum branching factor

• 𝑑: Depth of the least cost solution

• 𝑚: Maximum depth of the state space

TODO: More details

Heuristic (Informed) search

• Knows whether one non-goal state is «more promising»

• Suitable environments: Similar to uninformed search, but larger

Approach

• Tree- / graph search using additional knowledge beyond the definition of

the problem.

Best-first search

• Select the node to be expanded next based on some evaluation function

• Typically, 𝑓 is implemented by some heuristic

Greedy search

• Expand node with lowest subsequent cost estimate according to some ℎ,

i.e. 𝑓ሺ𝑛ሻ = ℎሺ𝑛ሻ

• 𝑛 may only appear to be closest to the goal

A*

• Obvious improvement, consider full path cost: 𝑓ሺ𝑛ሻ = 𝑔ሺ𝑛ሻ + ℎሺ𝑛ሻ

• ℎሺ𝑛ሻ needs to be admissible

• Optimal and complete

• Complexity 𝑂ሺ2ሺ𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 ℎሻ⋅𝑑ሻ, keeps all nodes in memory

SMA* - simplified memory-bounded A*

• A* usually runs out of space first → SMA* overcomes this by

▪ Fill up memory → forget the worst expanded nodes

▪ Ancestors of forgotten subtrees remember the value of the best

path within them

▪ Thus, subtrees are only regenerated if no better solution exists

Pascal Isliker Page 6

Local Search

Search for optimal states instead of paths.

• In many optimization problems the path is irrelevant, the goal state itself is the

solution.

Iterative improvement algorithms are used to solve such problems

• Keep a single “current” state and try to improve it

• Constant memory usage, suitable for online and offline search

Hill climbing search (gradient ascent / descent)

Systematic search for an optimum

• Finds a state that is a local maximum, by selecting the highest valued successor iff

its value is better than the current value.

The state space landscape

• Practical problems typically have an exponential number of local maxima

• Random-Restart hill climbing overcomes local maxima

• Random sideways moves escape from shoulders and loop on flat maxima (bad)

Simulated annealing: Optimizing hill climbing search

Idea Escape local maxima by allowing some “bad” moves but gradually

 decrease their size and frequency.

Application For good schedule of decreasing the temperature, it always reaches the

 best state. Widely applied for VLSI layout and airline scheduling.

Local beam search: Optimizing hill climbing search

• Keep 𝑘 states instead of 1; choose top 𝑘 of all their successors

• Choose 𝑘 successors randomly, biased towards good ones

Problem Often, all 𝑘 states end up on the same local hill

Solution Choose 𝑘 successors randomly, biased towards good ones

Genetic algorithms (GA): Improve on the idea of local beam search

Idea Combine stochastic local beam search + generating successors

 from pairs of states.

Application

• Require states encoded as strings

• Crossover helps iif substrings are meaningful components

• GAs ≠ evolution

Example: 𝑛 − queens problem

Put 𝑛 queens on a 𝑛 × 𝑛 board with no two queens on the same row,

column or diagonal.

Possible solution

• Initialize one queen per column

• Move one queen up/down at a time to reduce number of

conflicts using heuristics ℎ

• Almost always solves 𝑛 − queens problem almost

instantaneously, even for large 𝑛, e.g. 𝑛 = 1′000′000

Pascal Isliker Page 7

Adversarial Search

Adversarial search

• Unpredictable opponent Specify a move for every possible opponent reply

• Time limits Unlikely to find goal → must approximate

Minimax: depth-first exploration of game tree

Optimal strategy for a given game tree.

• MAX 1st player Wants to maximize utility of terminal states

• MIN 2nd player Wants to minimize (Max’s) utility

• Utility Numeric value (“payoff”) of terminal state

Idea

• Choose a move to position with highest minmax value

• Minimax value: highest value among options minimized by adversary

▪ Best achievable payoff against best play

Example

• Any 2-Player game tree (each player moves once)

• MAX’s best move at root 𝑎1 because MIN’s best reply will be 𝑏1

Properties

• Complete (finite tree)

• Optimal (Optimal opponent)

• Time complexity 𝑂ሺ𝑏𝑚ሻ

• Space complexity 𝑂ሺ𝑏𝑚ሻ

𝜶 − 𝜷 pruning: Overcoming exponential (𝑏𝑚) number of states

Successively tightening bounds on minmax values

• 𝛼 is the best value (to MAX) found so far in current subtree of a MAX

node

• If any node 𝑣 is worse than 𝛼, MAX will not choose it → prune branch

• Similarly: 𝛽 is the best score MIN is assured of in current subtree of a

MIN node

Example

1. Root: ሾ𝛼, 𝛽ሿ = ሾ−∞, +∞ሿ

2. Root: ሾ𝛼, 𝛽ሿ = ሾ3, +∞ሿ

3. Root: ሾ𝛼, 𝛽ሿ = ሾ3,3ሿ

Properties

• Pruning does not affect final results

• Good move ordering improves effectiveness of pruning

• Time complexity with «perfect ordering» = 𝑂ሺ𝑏𝑚/2ሻ

Types of Games

Pascal Isliker Page 8

Adversarial Search

Resource Limits: Towards real-world conditions

Standard approach

• Use Cutoff-Test instead of Terminal-Test, e.g. depth limit

• Use Evaluation (heuristic) function instead of Utility

• Lookup of start/end games

Nondeterministic (stochastic) games

Chance is introduced by dice-rolling or card-shuffling…

Simplified example

• A game with coin-flipping

• Nondeterminism is handled by an additional level in the tree, consisting of

chance nodes

Real-world example

• 2048: Numbers appear with probabilities at random board positions

• Backgammon: Before each move, dice-rolls determine the legal moves

Expectiminimax – maximizing the expected value

• Words just like minimax – except chance-nodes are also handled

• Expectiminimax gives perfect play

• In case of only 1 player → Expectimax

• Time complexity: 𝑂ሺ𝑏𝑚𝑛𝑚ሻ

▪ 𝑛 = number of distinct random events

▪ Possibilities are multiplied enormously in games of chance

▪ No likely sequences exist to do effective 𝛼 − 𝛽 pruning

Eval(uation) function: Designing or learning effective cutoff tests

For chess, typically linear weighted sum of features

• 𝐸𝑣𝑎𝑙ሺ𝑠ሻ = 𝑤1𝑓1ሺ𝑠ሻ + 𝑤2𝑓2ሺ𝑠ሻ + ⋯ + 𝑤𝑛𝑓𝑛ሺ𝑠ሻ

• Example: 𝑤1 = 9, 𝑓1ሺ𝑠ሻ = 𝑐𝑜𝑢𝑛𝑡𝑤ℎ𝑖𝑡𝑒−𝑞𝑢𝑒𝑒𝑛𝑠 − 𝑐𝑜𝑢𝑛𝑡𝑏𝑙𝑎𝑐𝑘−𝑞𝑢𝑒𝑒𝑛𝑠

• Can be learned with machine learning techniques

Pascal Isliker Page 9

Constraint satisfaction problems (CSP)

Allows useful general-purpose algorithms with more power than standard search.

Components of a CSP

• 𝑋 set of variables ሼ𝑋1, … , 𝑋𝑛ሽ

• 𝐷 set of domains ሼ𝐷1, … , 𝐷𝑛ሽ consists of allowed values ሼ𝑣1, … , 𝑣𝑘ሽ for 𝑋𝑖

• 𝐶 set of constraints consists of a pair ۃ𝑠𝑐𝑜𝑝𝑒, 𝑟𝑒𝑙ۄ (scope = tuple of variables, rel = relation)

Varieties of CSPs

Discrete variables

• Finite domains of size 𝑑

• Requires constraint language

Continuous variables

• E.g. precise start/end times for observations

• Linear constraints solvable in polynomial time

Varieties of Constraints

• Unary involve a single variable

• Binary involve variable pairs

• Higher-order involve 3 or more variables (e.g. Sudoku)

• Preferences e.g. red is better than green

 Real World CSPs / Usage of CSPs

• Assignment problems who teaches what class?

• Timetabling problems which class is offered when / where?

• Optimization with spreadsheets debugging

• Other scheduling tasks transportation or facotry workflow

• Other layout tasks floor planning / hardware configuration

Example: Map-coloring

• Variables 𝑊𝐴, 𝑁𝑇, 𝑄, 𝑁𝑆𝑊, 𝑉, 𝑆𝐴, 𝑇

• Domains 𝐷𝑖 = ሼ𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒ሽ

• Constraints Adjacent regions must have different colors

 e.g. 𝑊𝐴 ≠ 𝑁𝑇

• Solutions Assignments satisfying all constraints

 e.g. ሼ𝑊𝐴 = 𝑟𝑒𝑑, 𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛, … ሽ

Binary CSPs have a constraint graph. General Purpose CSP algorithms use

the graph structure to speed up search.

Pascal Isliker Page 10

Constraint satisfaction problems (CSP)

Backtracking search

Depth-first search with single-variable assignments for CSPs

General purpose methods can give huge gains in speed

• Which variable should be assigned next?

• In what order should its values be tried?

• Can we detect inevitable failure early?

• Can we take advantage of the problem structure?

Can be achieved by implementing the bold/italic functions below

Order of values: Ideas for Order-Domain-Values(var, assignment, csp)

Least constraining value

• Given 𝑣𝑎𝑟, choose the value that rules out the fewest values in the

remaining 𝑣𝑎𝑟𝑠.

Next variable: Ideas for Select-Unassigned-Variable(csp)

Minimum remaining values (MRV)

• Choose the variable with the fewest legal values → fail fast

Degree heuristic

• Choose the variable that adds most constraints on remaining variables

→ Works as tie-breaker in practice within MRV

Detect inevitable failure: Ideas for Inference(csp, var, value)

Forward checking

• Keep track of remaining legal values for unassigned variables

→ Terminate search when any variable has no legal values

Constraint propagation

• Forward checking propagates information from assigned variables only to immediate neighbours.

Pascal Isliker Page 11

Constraint satisfaction problems (CSP)

Detect inevitable failure: Ideas for Inference(csp, var, value)

• Arc consistency – the simplest form of constraint propagation

▪ 𝑋 → 𝑌 is consistent 𝑖𝑓𝑓 for every value 𝑥 of 𝑋 there is some allowed 𝑦 for 𝑌

▪ Arc consistence detects failure earlier than forward checking

Taking advantage of problem structure

Tree-structure CSPs

• If the constraint graph has no loops, the CSP can be solved in 𝑂ሺ𝑛𝑑2ሻ time

Algorithm for tree-structured CSPs

• Do a topological sort

• Create directed arc-consistency by

▪ For 𝑗 from 𝑛 down to 2, make arc consistent

• For 𝑗 from 1 to 𝑛, assign 𝑋𝑗 consistently with

Solving CSPs in Practice

Nearly tree-structured CSPs

• Many real-world CSPs can be converted to tree-structured problems

• ...By choosing a cycle cutset: a set of variables that if removed make

the graph a tree

• ...and subsequent cutset conditioning: Instantiate the variables in the

cutset then prune choices from remaining variables in the tree.

Other advice

• Exploiting structure in the values by breaking symmetry reduces

search space up to 𝑑

• Local search is very effective for CSPs

▪ e.g. Hill climbing with min-conflicts heuristic

• Constraint learning is one of the most important techniques in

modern CSP solvers

• Trade-off: enforcing consistency vs. search time

Terms

• Consistent / Legal = An assignment that doesn’t violate any constraints

• Complete = An assignment in which every variable is assigned a value

• A solution is consistent and complete

• Partial assignment leaves some variables unassigned

• Partial solution consists of partial assignments

Pascal Isliker Page 12

Knowledge, reasoning and logic

Knowledge bases (KB)

A set of sentences in a formal language

• Declarative approach to building an agent

• Two views of an agent

▪ At the knowledge level

▪ At the implementation level

Logic is a formal language for representing information

• Syntax defines the «structure» of sentences

• Semantics defines the «meaning» of sentences

Entailment ሺ⊨, ⊢ሻ

Entailment is a relationship between sentences that is based on semantics

𝐾𝐵 ⊨ 𝛼

• Entailment means that one thing follows from another:

from KB I know 𝛼

• KB entails sentence 𝛼 iff 𝛼 is true in all worlds where KB is true

Propositional logic: Pros and Cons

• Declarative: pieces of syntax correspond to facts

• Allows partial/disjunctive/negated information

• Meaning is context-independent

First-order logic (FOL) = Prädikatenlogik 1. Stufe

• Quantifiable variables ∀, ∃

• Objects people, houses, numbers,…

• Relations (predicates) red, round, prime,…

• Functions

Inference ሺ⊨𝑖, ⊢𝑖ሻ

𝐾𝐵 ⊨𝑖 𝛼

• Sentence 𝛼 can be derived from KB by procedure 𝑖

Desirable properties of 𝑖

• Soundness 𝑖 is sound whenever 𝐾𝐵 ⊨𝑖 𝛼, it is also true that 𝐾𝐵 ⊨ 𝛼

• Completeness 𝑖 is complete if whenever 𝐾𝐵 ⊨ 𝛼, it is also true that 𝐾𝐵 ⊨𝑖 𝛼

Propositional logic (Aussagenlogik)

Reasoning over unrelated facts

• The simplest of all logics to illustrate basic ideas

¬ ¬𝐴 NICHT A

∧ 𝐴 ∧ 𝐵 A UND B

∨ 𝐴 ∨ 𝐵 A ODER B

⇒ 𝐴 ⇒ 𝐵 WENN A DANN B

⇔ 𝐴 ⇔ 𝐵 A GLEICH B

Pascal Isliker Page 13

Knowledge, reasoning and logic

Logical equivalence: rules to manipulate sentences of logic

double-negation ¬¬𝐴 ⇔ 𝐴

contraposition 𝐴 ⇒ 𝐵 ⇔ ¬𝐵 ⇒ ¬𝐴

implication 𝐴 ⇒ 𝐵 ⇔ ¬𝐴 ∨ 𝐵

commutativity 𝐴 ∧ 𝐵
𝐴 ∨ 𝐵

⇔ 𝐵 ∧ 𝐴
 𝐵 ∨ 𝐴

associativity ሺ𝐴 ∧ 𝐵ሻ ∧ 𝐶
ሺ𝐴 ∨ 𝐵ሻ ∨ 𝐶

⇔ 𝐴 ∧ ሺ𝐵 ∧ 𝐶ሻ
 𝐴 ∨ ሺ𝐵 ∨ 𝐶ሻ

distributivity 𝐴 ∧ ሺ𝐵 ∨ 𝐶ሻ
𝐴 ∨ ሺ𝐵 ∧ 𝐶ሻ

⇔ ሺ𝐴 ∧ 𝐵ሻ ∨ ሺ𝐵 ∧ 𝐶ሻ
ሺ𝐴 ∨ 𝐵ሻ ∧ ሺ𝐵 ∨ 𝐶ሻ

De Morgan ¬ሺ𝐴 ∧ 𝐵ሻ
¬ሺ𝐴 ∨ 𝐵ሻ

⇔ ¬𝐴 ∨ ¬𝐵
¬𝐴 ∧ ¬𝐵

Example: Which of the following is correct?

• 𝐹𝑎𝑙𝑠𝑒 ⊨ 𝑇𝑟𝑢𝑒 𝑇𝑟𝑢𝑒

• 𝑇𝑟𝑢𝑒 ⊨ 𝐹𝑎𝑙𝑠𝑒 𝐹𝑎𝑙𝑠𝑒

• 𝐴 ∧ 𝐵 ⊨ 𝐴 ⇔ 𝐵 𝑇𝑟𝑢𝑒

Example: Formuliere die folgenden Aussagen mithilfe der Prädikate

• 𝐵ሺ𝑥ሻ 𝑖𝑠𝑡𝐵𝑙𝑜𝑓𝑓ሺ𝑥ሻ

• 𝑊ሺ𝑥ሻ 𝑖𝑠𝑡𝑊𝑢𝑒𝑟𝑔𝑒𝑙ሺ𝑥ሻ

• 𝑃ሺ𝑥, 𝑦ሻ 𝑃𝑓𝑒𝑛𝑛𝑒𝑟𝑡ሺ𝑥, 𝑦ሻ

• 𝑁ሺ𝑥ሻ 𝑁𝑎𝑢𝑠𝑒𝑟𝑡ሺ𝑥ሻ

Zu jedem Würgel gibt es einen Bloff, der von diesem Würgel gepfennert wird.

∀𝑥∃𝑦൫𝑊ሺ𝑥ሻ ∧ 𝐵ሺ𝑦ሻ ∧ 𝑃ሺ𝑥, 𝑦ሻ൯

Wenn irgendein Bloff nausert, dann nausern alle Bloffs.

∃𝑥൫𝐵ሺ𝑥ሻ ∧ 𝑁ሺ𝑥ሻ൯ → ∀𝑦൫𝐵ሺ𝑦ሻ ∧ 𝑁ሺ𝑦ሻ൯

Wenn es für jeden Bloff einen Würgel gibt, der diesen Bloff pfennert, dann nausern alle

Würgel.

∀𝑥∃𝑦൫𝐵ሺ𝑥ሻ ∧ 𝑊ሺ𝑦ሻ ∧ 𝑃ሺ𝑦, 𝑥ሻ൯ → ∀𝑧൫𝑊ሺ𝑧ሻ ∧ 𝑁ሺ𝑧ሻ൯

A sentence is ... if it is ...

• Valid allgemeingültig true in all possible models

• Satisfiable erfüllbar true in some model

• Unsatisfiable Unerfüllbar false in all models

Pascal Isliker Page 14

Datalog

Reasoning in databases

Implementing an ontology (a graph) using trioples in a database. We’re interested in pattern matching in graphs such as records in relational databases.

Task: For a given graph and pattern, find all instances of pattern.

Example: Given a graph with edge labels ... Find drugs that interfere with another drug involved in the treatment of a disease

• Drug 𝑋 interferes with drug 𝑌

• Drug 𝑌 regulates the expression of gene 𝑍

• Gene 𝑍 is associated with disease 𝑊

Datalog – A relevant subset of FOL

Background

• Full FOL is very expressive, but not decidable in general

• Thus: Fallback to first-order definite clauses (Horn clauses)

• Can represent the type of knowledge typically found in relational databases

Datalog Terminology

• Knowledge base a set of clauses

• Clause is either an atomic symbol (fact) or a rule

• Atom has either the form 𝑝 or 𝑝ሺ𝑡1, … , 𝑡𝑛ሻ

▪ Predicate

▪ Term (variable or constant)

Inference in Datalog

Foundation: Modus Ponens = implication elimination

• If 𝑃 ⇒ 𝑄 and 𝑃 = 𝑡𝑟𝑢𝑒, then 𝑄 = 𝑡𝑟𝑢𝑒

𝑃 ⇒ 𝑄, 𝑃

𝑄

Forward chaining (data-driven approach):

• Search for true antecedents («if clauses»)

→ infer consequent («then clause») to be true

→ add this information to KB

• Intuitively understandable

• Sound and complete for Datalog

• Efficiently implemented for Datalog (CSP)

Backward chaining (goal-driven approach):

• Produces no unnecessary facts

• Sound and complete for Horn clauses

• Typically implemented using a form of SLD resolution (depth-first)

Assuming a relation 𝑟ሺ𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡ሻ and pseudo syntax:

𝑟𝑒𝑠𝑢𝑙𝑡ሺ𝑋ሻ <=

𝑟ሺ𝑋, 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑠𝑊𝑖𝑡ℎ, 𝑌ሻ & 𝑟ሺ𝑌, 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑒𝑠, 𝑍ሻ& 𝑟ሺ𝑍, 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑊𝑖𝑡ℎ, 𝑊ሻ

Pascal Isliker Page 15

Planning as Search

Automated Planning

• A Single agent in a → multi-agent / game-playing possible

• Fully observable, → conformant planning possible

• Sequential and discrete → temporal and real-time planning possible

• Deterministic and → probabilistic planning possible

• Static (offline) environment → online possible

Planning Domain Definition Language (PDDL)

• Subset of FOL

• Used to define the planning task as a search problem

• Derived from STRIPS planning language

• Allows for factored representation

Restricted language allows for efficient algorithms

• Action precondition: conjunction of positive literals

• Action effects: conjunctions of literals

• Applicability of action 𝑎 in state 𝑠: 𝑖𝑓𝑓 𝑠 ⊨ 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛ሺ𝑎ሻ

Example - Action

𝐴𝑐𝑡𝑖𝑜𝑛ሺ𝐹𝑙𝑦ሺ𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜ሻ,

 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 𝐴𝑡ሺ𝑝, 𝑓𝑟𝑜𝑚ሻ ∧ 𝑃𝑙𝑎𝑛𝑒ሺ𝑝ሻ ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡ሺ𝑓𝑟𝑜𝑚ሻ ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡ሺ𝑡𝑜ሻ

 𝐸𝑓𝑓𝑒𝑐𝑡: ¬𝐴𝑡ሺ𝑝, 𝑓𝑟𝑜𝑚ሻ ∧ 𝐴𝑡ሺ𝑝, 𝑡𝑜ሻሻ

Planning is the art and practice of thinking before acting. Classical planning is defined as the task of finding a sequence of actions to accomplish a goal in a discrete,

deterministic, static, fully observable environment.

Why is planning so big?

• Solved applications Large logistics problems, operational planning, robotics, scheduling,…

• Community Search is its basis; logic and knowledge representation is part of it

Pascal Isliker Page 16

Planning Algorithms

Planning as state-space search – approachable with any algorithm from V03 or local search

• Forward (progression): search considers actions that are applicable

• Backward (regression): search considers actions that are relevant

Heuristics for forward state-space search – enabled by factored representations for states and actions

Possible domain-independent heuristics (adding new links to the graph to ease the problem)

• Relaxing actions

o Ignore-precondition heuristic All actions are applicable anytime

o Ignore-delete-list heuristic Removing all negative literals from effects

• State abstraction Reduce the state space by e.g. ignoring some fluents

Hierarchical planning: A modern, more general alternative

• Technical solution sketch

o Hierarchical task networks (HTN): more factored representations for actions

o Two kinds of actions: Primitive actions and High level actions (HLA)

Hierarchical planning algorithms

• Search for primitive solutions: Hierarchical-Search

o Recursively chose a HLA in current plan

o Replace HLA with one of its refinements, until plan achieves its goal

• Search for abstract solutions

o

• Angelic-Search

Pascal Isliker Page 17

Supervised Learning

Types of Feedback

• Supervised learning observes input-output pairs, learns function

• Unsupervised learning detects clusters, learns patterns in the input

• Reinforcement learning learns from rewards and punishments

The task of supervised learning is this

Given a training set of 𝑁 example input-output (feature-label) pairs

ሺ𝑥1, 𝑦1ሻ, ሺ𝑥2, 𝑦2ሻ, … , ሺ𝑥𝑁, 𝑦𝑁ሻ

Where each pair was generated by an unknown function 𝑦 = 𝑓ሺ𝑥ሻ,

discover a function ℎ that approximates the true function 𝑓.

The function / model ℎ is the hypothesis, drawn from a hypothesis space ℋ of

all possible functions.

The model ℎ should find the best-fit function. Overfitting and underfitting

should be avoided.

• Underfitting ℎ fails to find a pattern in the data

• Overfitting ℎ pays too much attention to a particular data set

• Test / train data

• Bias-variance tradeoff

o complex (low-bias) ℎ, that fits training data better

o simple (low-variance) ℎ, that may generalize better

A good model ℎ complies with Ockham’s razor principle: Maximize a

combination of consistency and simplicity.

Doing machine learning

Performance measurement

1. Use theorems of computational/statistical learning theory

2. Try ℎ on a new test set (→ use cross-validation)

3. Report performance (Accuracy, Precision, Recall)

• 𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, 𝑃 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

Shallow vs deep learning: Add depth to learn features automatically

• Classic computer vision Uses manually extracted features

• Convolutional Neural Networks (CNN) Uses raw input to learn features

Pascal Isliker Page 18

Supervised Learning using Neural Networks

Neurons

• Oversimplification of real neurons

• Output is a thresholded linear function of the inputs: 𝑎𝑖 = 𝑔ሺ𝑖𝑛𝑖ሻ = 𝐺ሺΣ𝑗𝑤𝑗,𝑖 ⋅ 𝑎𝑗ሻ

• Changing the bias weight 𝑊0,𝑖, moves the threshold location

Feed-forward neural network (FNN)

A FNN, has connections only in one directions. Each node computes a function of

its inputs and passes the result to its successors.

Convoluational Neural Network (CNNS)

• Goal fewer free parameters → eases learning

• Idea exploit 2D-correlated local structure in (image) input data

• Principle

o A «filter» moves over every input pixel and calculates a feature

that describes the pixels’ local context

→ map result to same spatial location

→ filter weights is trainable

o Have several such «filters» to encode different features

o After each filtering layer, sub-sample result to reduce spatial

resolution and increase «field of vision»

Neural Network: Weight Adjustment

Our example neural network

 𝑓𝑊ሺ𝑥ሻ = 𝑦

with image 𝑥, ground truth 𝑦 and params 𝑊

ሺ𝑊 = ሼ𝑤1, 𝑤2, … ሽ initialized randomlyሻ

Error measure

 𝐿ሺ𝑊ሻ =
1

𝑁
σ ሺ𝑓𝑊ሺ𝑥𝑖ሻ − 𝑦𝑖ሻ2𝑁

𝑖=1

Average of quadratic difference on all images (loss function 𝐿)

Trained by gradient descent (complete network ist differentiable)

• Forward pass: calculation of loss function 𝐿 for a mini batch of

training samples

• Backward pass: calculation of
𝜕𝐿

𝜕𝑊𝑙,𝑖
 for each weight 𝑊𝑙,𝑖 on overall loss

Pascal Isliker Page 19

Unsupervised Learning with Autoencoders

Flavors of unsupervised learning (UL)

Usual task: Clustering

• Separate 𝑁 examples described by feature vectors into 𝐾 groups.

Challenges

• similarity by distance or density

• Choice of parameters

Other tasks

• Discovery of unobserved variables

• Dimensionality reduction

• Feature / representation learning (e.g. autoencoders)

• Matrix completion (e.g. for recommendation)

• Discovery of dependency structure in features (graph analysis)

Summary

Learning from the data itself is also the main learning signal in biological learning.

UL is deemed the greatest innovation area in ML by many experts. UL is more than clustering, in particularly, feature learning via deep models. UL to facilitate some

SL task may benefit from output distribution matching.

AE learn the structure of the data by balancing approximate reconstruction with some regularization penalty. They thus learn to capture lower-dimensional

manifolds and important aspects of the underlying data-generating distribution.

Observation: UL is less employed than SL.

Problem: cost function is unclear!

Reason

• UL is often used to improve SL in absence of enough labeled data

• Without labels, UL cost doesn’t know which SL task to focus on

Solution: Output distribution Matching (ODM)

Use distribution instead of exact constraint for cost function:

• SL maps data 𝑋 to labels 𝑌 via 𝑌 = 𝐹ሺ𝑋ሻ, ሺ𝑋, 𝑌ሻ~𝐷

• Impose constraint on 𝐹 using uncorrelated samples

𝑥~𝐷, 𝑦~𝐷: 𝐷𝑖𝑠𝑡𝑟ሾ𝐹ሺ𝑥ሻሿ = 𝐷𝑖𝑠𝑡𝑟ሾ𝑦ሿ

• Use it as UL cost function: 𝐾𝐿ሺ𝐷𝑖𝑠𝑡𝑟ሾ𝑦ሿ||𝐷𝑖𝑠𝑡𝑟ሾ𝐹ሺ𝑥ሻሿሻ

➢ Cost works towards matching distribution of inferred labels to the one in

knownሺ𝑥, 𝑦ሻ pairs

➢ High chance of practically improving SL if ODM cost can be optimized

Pascal Isliker Page 20

Unsupervised Learning with Autoencoders

Autoencoders (AE)

An autoencoder is a neural network that is trained to attempt to copy its

input to its output. Internally, it has a hidden layer ℎ that describes a

code used to represent the input… Autoencoders are designed to be

unable to learn to copy perfectly.

• Desired effect Learn useful properties of the data

• Application scenarios

▪ Traditionally dimensionality reduction, feature learning

▪ Recently generative modelling (VAE, GAN)

Use case 1 for AE: Learning embeddings

• Embedding ≔ Lower-dimensional representation in an “embedded subspace”

• Applications

✓ Unsupervised pre-training

✓ Feature learning

✓ Dimensionality reduction

Use case 2 for AE: Novelty detection

• Because the AE learns to encode / capture variations in the training data, it is

by design bad in encoding previously unseen variation

• Application: Predictive maintenance

▪ Vibration signal → feature extraction via spectrogram → autoencoder

▪ Monitor reconstruction error as a “novelty signal”

Undercomplete (compressing) autoencoders

• ℎ has lower dimension than 𝑥

• Must discard / compress some information in ℎ

Overcomplete (regularized) autoencoders

• ℎ has higher dimension than 𝑥

• Must be regularized

Use case 3 for AE: Information retrieval (IR) via semantic hashing

Efficient IR by dimensionality reduction

• Given a set of documents

• Train an AE to produce a code that is low dimensional and binary

• Create a hash table from binary code to document

• Retrieve all docs that have the same binary code as the query

• Enlarge the similar results: flip bits from query’s encoding

Pascal Isliker Page 21

Generative Adversarial Learning

Generative Adversarial Nets (GANs)

Flavors of generative models

• Statistical models that directly model the pdf

• Graphical models with latent variables

• Autoencoders

Promises (Pros)

• Learning about high-dimensional, complicated probability distribution

• Simulate possible futures for planning or simulated reinforcement learning

• Handle missing data

• Some applications actually require generation

Common drawbacks (Cons)

• Statistical models suffer severely from curse of dimensionality

• Approximations needed for intractable probabilistic computations during

ML estimation

• Unbacked assumptions and averaging

GAN model formulation (improved):

Implement both G and D as deep convnets (DCGAN)

• No pooling, only fractionally-strided convolutions (G) and strided

convolutions (D)

• No fully connected hidden layers for deeper architectures

Features of (DC)GANs

Learn semantically meaningful latent space

Training is not guaranteed to converge

• Gradient descent isn’t meant to find the corresponding Nash

Equilibria

• How to sync D’s and G’s training is experimental

• Research on adversarial and neural networks is still ongoing (2022)

Adversarial nets: Bootstrapping implicit generative representations

Train 2 models simultaneously

• G: Generator learns to generate data points 𝑥

• D: Discriminator learns 𝑝ሺ𝑥 𝑛𝑜𝑡 𝑏𝑒𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑ሻ

𝐷 and 𝐺 learn, while competing!

The latent space 𝑍 serves as a source of variation to generate different data

points. Only D has access to real data.

Pascal Isliker Page 22

Generative Adversarial Learning

GAN use cases

Research has gained a lot of momentum very quickly. GANs have shown to produce

realistic output on a wide range of image, audio, and text generation tasks.

• Generate images from text

• Segment images into semantically meaningful parts

• Complete missing parts in images

Image inpainting as a sampling problem approached by ML

Use Case: Complete missing parts in images

Training:

Regard images as samples of some underlying probability distribution 𝑃𝐺.

1. Learn to represent this distribution using a GAN setup (G and D)

Testing / Application:

Draw a suitable sample from 𝑃𝐺 by

1. Fixing parameters Θ𝐺 and Θ𝐷 of G and D, respectively

2. Finding input 𝑧Ƹ to G such that 𝐺ሺ𝑧Ƹሻ fits two constraints:

• Contextual: Output must match the known parts of the image

that needs inpainting

• Perceptual: Output must look generally “real” according to

D’s judgement

3. Using gradient-based optimization on 𝑧Ƹ

Reconstruction formulation

Given

• Uncomplete/corrupted image 𝑥𝑐𝑜𝑟𝑟

• Binary mask 𝑀 (1 = given, 0 = corr)

• Trained networks G and D

Problem: Find 𝑧Ƹ such that 𝑥𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = 𝑀 ⋅ 𝑥𝑐𝑜𝑟𝑟 + ሺ1 − 𝑀ሻ ⋅ 𝐺ሺ𝑧Ƹሻ

Solution: Define contextual and perceptual loss as follows

• 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙ሺ𝑧ሻ = ԡ𝑀 ⋅ 𝐺ሺ𝑧ሻ − 𝑀 ⋅ 𝑥𝑐𝑜𝑟𝑟ԡ1

• 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙ሺ𝑧ሻ = logሺ1 − 𝐷൫𝐺ሺ𝑧ሻ൯

• 𝐿ሺ𝑧ሻ = 𝐿𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙ሺ𝑧ሻ + 𝜆 ⋅ 𝐿𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙ሺ𝑧ሻ

Pascal Isliker Page 23

Reinforcement Learning

Agent learns by interacting with a stochastic environment!

Faces of reinforcement learning

• Optimal control

• Dynamic Programming (Operations Research)

• Reward systems (Neuroscience)

• Classical/Operant Conditioning (Psychology)

Characteristics

• No supervisor, no goals – only rewards signals

• Feedback is delayed

• Objective: maximize cumulative reward

• Trade-off between exploration and exploitation

• Sequential decisions: actions effect observations

Application Areas

Automated vehicle control, Chat bots, Game playing, DB query optimization,

Medical treatment planning, Data Center Cooling,…

Perform an MCTS search: provide the basis for a move

Create (empty or partly re-used) tree with root 𝑠𝑡

Perform 1’600 simulations

1. Start at 𝑠 = 𝑠𝑡

2. Traverse tree

• While 𝑠 is not a leaf node: chose 𝑎 that maximizes 𝑄 + 𝑈

3. Expand tree: query neural net for 𝑝Ԧ, 𝑣 = 𝑓𝜃ሺ𝑠ሻ

𝑁 = 0, 𝑊 = 0, 𝑄 = 0, 𝑝 = 𝑝Ԧ𝑎

4. Backup: update statistics of each visited node:

𝑁 = 𝑁 + 1, 𝑊 = 𝑊 + 𝑣, 𝑄 = 𝑊/𝑁

The game of Go

• Perfect information, deterministic, two-player, turn-based, zero-sum

• Played on a 19x19 board

• Two possible results: win or lose

• Search space (~10170 states, chess: 1050ሻ

Alpha Zero Go

Goal

• In state 𝑠𝑡, choose next move 𝑎𝑡

Ingredients

• Neural Network 𝑝Ԧ, 𝑣 = 𝑓𝜃ሺ𝑠𝑡ሻ that outputs two quantities

▪ 𝑝Ԧ Policy vector distribution over all actions

▪ 𝑣 Value estimated probability of winning

• Monte Carlo Tree Search (MCTS) to build ad hoc search tree

▪ MC: tree not fully grown → explore only likely branches

Pascal Isliker Page 24

Reinforcement Learning

Training the policy / value network by policy iteration

Step 1: Create experience by selfplay evaluate the current policy (create training set)

1. Initialize 𝑓𝜃 randomly

2. Play 25’000 games against yourself

• Use MCTS and current best 𝑓𝜃 for both player’s moves

• For each move, store

▪ Game state

▪ search probabilities

▪ winner ሺ𝑧 = ±1ሻ

Step 2: (Re-)train neural network improve the current policy (optimise weights)

1. Experience replay: sample mini batch of 2’048 positions from last 500’000 self-play games

2. Retrain 𝑓𝜃 on this batch using supervised learning

• Input: game states

• Output move-probabilities 𝑝

• Labels: search-probabilities 𝜋, actual winner 𝑧

• Loss: cross-entropy between 𝑝, 𝜋 + 𝑀𝑆𝐸ሺ𝑣, 𝑧ሻ + 𝐿2 − 𝑟𝑒𝑔ሺ𝜃ሻ

Step 3: Evaluate current network test if the new network is stronger

1. Play 400 games between current best vs. latest 𝑓𝜃

• Choose each move by MCTS and respective network

• Play deterministically (no additional exploration)

2. Replace best network with latest 𝑓𝜃 if the latest wins ≥ 55%

Pascal Isliker Page 25

Societal Impact

Responsible AI: Developing for algorithmic fairness (FAT / ML)

Purpose

• Help to build algorithmic systems in publicly accountable ways

• Accountability: the obligation to report, explain, or justify algorithmic

decision-making / mitigate any negative social impacts or potential harms

Premise

• A human ultimately responsible for decisions made/informed by an

algorithm

Principles

• Responsibility Make somebody Available who will take care of adverse

 individual / societal effects

• Explainability Explain an algorithmic decision in non-technical terms to

 end users

• Accuracy Report all sources of uncertainty / error in algorithms &

 data

• Audibility Enable 3rd parties to probe & understand system

 behaviour

• Fairness Ensure algorithmic decisions are not discriminatory to

 people groups

Unintended Threats trough AI systems

Algorithmic bias occurs when a computer system behaves in ways that

reflects the implicit values of humans involved in the data collection, selection

or use.

Different error types, e.g. in a policing application

• Mostly false positives for blacks

• Mostly false negatives for whites

Semantics by pattern recognition methods can be hard.

Indirect threat: mass unemployment

• Fear Less qualified jobs vanish due to robots

• Likely

▪ Repetitive tasks vanish due to AI

▪ Other jobs are created

Pascal Isliker Page 26

Societal Impact

Guardian against malicious use

Includes all practices that are intended to compromise the security of individuals,

groups or a society.

What enables potential threats by AI systems?

• Dual-use area technology

• Efficiency and scalability

• Potential to exceed human capabilities

• Potential to increase anonymity

• Rapid diffusion

• Novel unresolved vulnerabilities

Potential impact areas

• Digital security

▪ By using AI systems to automate cyberattacks or social engineering

▪ By attacking AI systems

• Physical security

▪ By individual drones or autonomous weapons

▪ By coordinating swarms that would otherwise not be controllable

▪ By making normal autonomous agents malfunction

• Political security

▪ By Surveillance and mass collection of data

▪ By persuasion through targeted propaganda

▪ By deception through synthetic news, videos

Potential interventions

• Learning from and with the cybersecurity community

• Exploring different openness models

• Promoting a culture of responsibility

• Developing technological and policy solutions

Possible futures

The singularity is near (Ray Kurzweil):

• Superintelligence will enhance human life

Autonomous robots will … (Jürgen Schmidhauber)

• Be curious about human life

• Be enabled by artificial curiosity and LSTM neural nets

• Colonize space on the look for resources to reproduce

Humans can become godlike (Yuval Noah Harari):

• Humans will upgrade themselves in 3 ways: biological engineering,

cyborg engineering and robotics

• A new class of people will emerge by 2050: the useless class

• The most important skill will be learning to learn

The vision of Gene Roddenberry

• The acquisition of wealth is no longer a driving force in our lives. We

work to better ourselves and the rest of humanity.

