Introduction

What is Scientific Computing?

- Algorithms and modeling and simulation
- Computer and information science
- The computing infrastructure

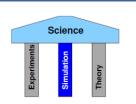
Gaining Scientific Knowledge

The classical scientific process

- Characterization of the real world
 - Observation
 - Quantification/measurement
- Hypothesis
 - Theory
 - model
- Prediction
 - Consequences/logical deducation from hypothesis/model
- Experiment
 - Verification/falsification
 - Discrepancies might lead to improved model

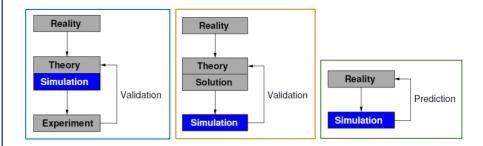
High Performance Computing (HPC)

Parallel processing for running advanced application programs efficiently, reliably and quickly.



When is a Simulation required?

- Replacing analytical solvers
- Replacing Experiments
- Replacing analytical solvers and experiments



Introduction - Population Models

Population Models and ODE

Population models describe the interaction between $k \in \mathbb{N}$ different species y_1, \dots, y_k in an ecological or social system.

They are often described as an initial value problem based on a set of Ordinary Differential Equations (ODE) of first order.

$$\frac{d}{dt}y = f(t, y(t))$$

Where

$$y(t) = \begin{pmatrix} y_1(t) \\ \vdots \vdots \\ y_n(t) \end{pmatrix}, \qquad f(t, y(t)) = \begin{pmatrix} f_1(t, y(t)) \\ \vdots \\ f_n(t, y(t)) \end{pmatrix}, \qquad y(t = t_0) = y^{(0)} = \begin{pmatrix} y_1(t_0) \\ \vdots \\ y_n(t_0) \end{pmatrix}$$

Such ODEs' can be solved numerically, e.g. using the *Runge-Kutta* method.

Such models often depend on plausability considerations rather than natural laws. Therefore, it is important to compare the outcome of such numerical simulations with real data.

Population Model

Let us consider the species y(t) as a function of time t without any interaction with its environment:

- y(t): head count at time t
- b > 0: birth rate
- m > 0: mortality rate
- b m: growth rate

We can describe the development of y(t) through an ODE of first order:

$$\frac{dy}{dt} = b \cdot y - m \cdot y = (b - m) \cdot y$$

Preditor-Prey Model

In its original form, it describes a theory of competition between two species. Applied to an interaction between a predator and its prey, we can reduce the model to the following assumptions:

Two populations $y_1(t)$ = prey and $y_2(t)$ = predator

- $y_1(t)$ increases with the specific net rate g_1
- $y_2(t)$ dies with the specific net rate g_2

The prey is eaten by the predator, which results in an increase of predators and a corresponding decrease of prey by $g_3 \cdot y_1(t) \cdot y_2(t)$.

Mathematically, the model is described by

•
$$\frac{dy_1}{dt} = g_1 y_1 - g_3 y_1 y_2$$

• $\frac{dy_2}{dt} = g_2 y_2 + g_3 y_1 y_2$

Or as a two dimensional vectors

$$\begin{pmatrix} \frac{dy_1}{dt} \\ \frac{dy_2}{dt} \end{pmatrix} = \begin{pmatrix} g_1y_1 - g_3y_1y_2 \\ g_2y_2 + g_3y_1y_2 \end{pmatrix}$$

Of special interest is the so-called fixed point, where both derivatives vanish:

•
$$\frac{dy_1}{dt} = g_1 y_1 - g_3 y_1 y_2 = 0 \to \tilde{y}_2 = \frac{g_1}{g_3}$$

•
$$\frac{dy_2}{dt} = g_2 y_2 + g_3 y_1 y_2 = 0 \rightarrow \tilde{y}_1 = \frac{g_2}{g_3}$$

Basic Transformations

Representing translations as matrix multiplications

Translation by (u; v)

$$\begin{pmatrix} x_{new} \\ y_{new} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & u \\ 0 & 1 & v \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{old} \\ y_{old} \\ 1 \end{pmatrix}$$

Scaling by a factor α

$$\begin{pmatrix} x_{new} \\ y_{new} \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} x_{old} \\ y_{old} \\ 1 \end{pmatrix}$$

Rotation around a point (a; b)

$$\begin{pmatrix} x_{new} \\ y_{new} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -a \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{old} \\ y_{old} \\ 1 \end{pmatrix}$$

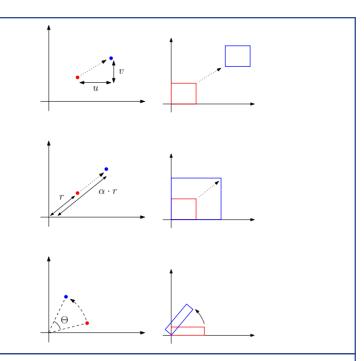


Image Processing using Filters

Goal Restore and or Modify Images

Moving average

Replace each pixel value with the weighted average of its neighborhood.

$$Im = Image, \quad F = Kernel \ Filter, \quad len(F) = 2N + 1$$
$$J(x, y) = \sum_{k=-N}^{N} \sum_{I=-N}^{N} Im(x + k, y + I) \cdot F(N + k, N + I) \quad \frac{1}{9} \ \frac{1}{1} \ \frac{1}{1}$$

Key Properties

• Shift invariance F(shift(I)) = shift(F(I))

• Linearity* $F(I_1 + I_2) = F(I_1) + F(I_2)$

Problem

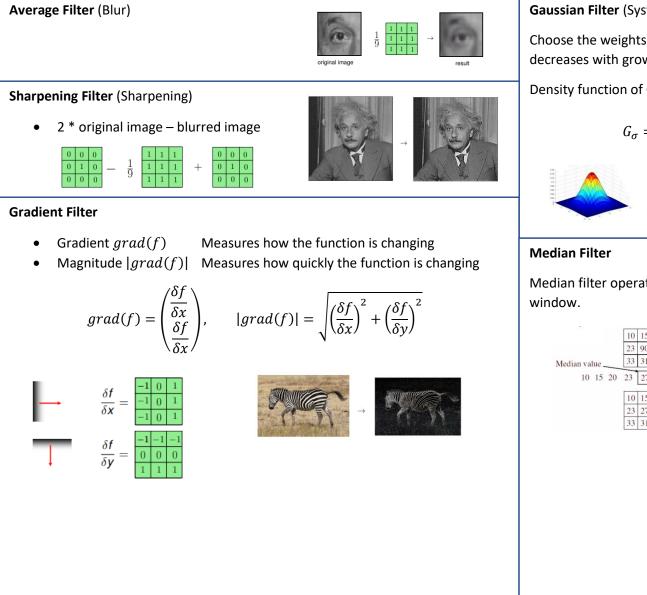
Not specified for pixels close to the edge. For example, if the neighborhood of the marked pixel is outside of the boundary.

Solutions

- Treat pixels outside as 0
- Wrap around pixels from the opposite edge
- Treat like nearest pixel

				×			

Image Processing using Filters

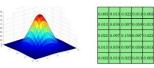


Gaussian Filter (Systematic Blur)

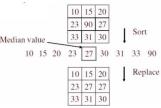
Choose the weights of the neighborhood pixels such that their contribution decreases with growing distance from the center.

Density function of Gaussian distribution

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}, \qquad 2 \cdot \sigma \approx 0.5 \cdot len(F)$$



Median filter operates over a window by selecting the median intensity in the



Naive Bayes Approach

•

٠

•

•

•

Bayes Filter Pre $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$ **Formal Description** Ste Events are described by a feature vector $X = (X_1, ..., X_n)$ Variables X_i have to be independent Prediction Variable $Y \in \{0,1\}$ Calculated estimations • Step 1.1 $P(X|Y=0) \prod_{i=1}^{n} P(X_i|Y=0)$ Step 1.2 $P(X|Y = 1) \prod_{i=1}^{n} P(X_i|Y = 1)$ • Step 2.1 $P(Y = 0|X) \frac{P(X|Y) \cdot P(Y=0)}{P(X)}$ • Step 2.2 $P(Y = 1|X) \frac{P(X|Y) \cdot P(Y=1)}{P(X)}$ Step 2 Step 3.1 $P(Y = 0|X) > P(Y = 1|X) \rightarrow predict Y = 0$ Step 3.2 $P(Y = 0|X) < P(Y = 1|X) \rightarrow predict Y = 1$ Day Outlook Temperature Humidity Wind Play Tennis? Р

1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

ediction - Toy example

$$X := \left(\underbrace{Sunny}_{i=X_{1}}, \underbrace{Cool}_{i=X_{2}}, \underbrace{High}_{i=X_{3}}, \underbrace{Strong}_{i=X_{4}}\right)$$
ep 1

$$P(Play = Yes) = \frac{9}{14}, \quad P(Play = No) = \frac{5}{14}$$

$$P(X_{i}|Play = Yes) = \prod_{i=1}^{n} P(X_{i}|Y = Yes) = \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} = 0.00823, \quad for \ i = 1, ..., 4$$

$$P(X_{i}|Play = No) = \prod_{i=1}^{n} P(X_{i}|Y = No) = \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} = 0.0576, \quad for \ i = 1, ..., 4$$

$$P(X_{i} \land Play = Yes) = 0.00823 \cdot \frac{9}{14} = 0.0053$$

$$P(X_{i} \land Play = No) = 0.0576 \cdot \frac{5}{14} = 0.0206$$

$$P(Play = Yes|X_{i}) = \frac{P(X|Y) \cdot P(Y = Yes)}{P(X_{i})} = \frac{P(X_{i} \land Play = Yes)}{P(X_{i})} = \frac{0.0053}{0.02186} = 0.242$$

$$P(Play = No|X_{i}) = \frac{P(X|Y) \cdot P(Y = No)}{P(X_{i})} = \frac{P(X_{i} \land Play = No)}{P(X_{i})} = \frac{0.0206}{0.02186} = 0.942$$
Step 3 Compare the two results of Step 2 and choose the more likely event.

$$\max(P(Play = Yes|X_i), P(Play = No|X_i)) = \max(0.242, 0.942) = P(Play = No|X_i)$$

Predict (Play = No) for X_i

Clustering (Unsupervised Learning)

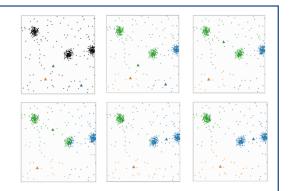
K-Means Clustering

Step 1: Choose k objects as initial cluster centers.

Step 2: Assign each data point to the cluster which has the closest mean point (centroid) under chosen distance metric.

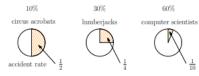
Step 3: When all data points have been assigned, recalculate the positions of k centroids (mean points).

Step 4: Repeat steps 2 and 3 until the centroids do not change anymore.



Maximum Likelihood Estimation

Given the following example



Problem 1: What is the *most likely profession* of a person *who had an accident*?

- $p(acrobat \land accident) = 0.1 \cdot 0.5 = 0.05$
- $p(lumberjack \land accident) = 0.3 \cdot 0.25 = 0.075$
- $p(computer \ scientist \land accident) = 0.6 \cdot 0.1 = 0.06$

Problem 2: What is the *probability* that a random person has an *accident*?

- $p(accident) = 0.1 \cdot 0.5 + 0.3 \cdot 0.25 + 0.6 \cdot 0.1 = 0.185$
- $p(no \ accident) = 0.1 \cdot 0.5 + 0.3 \cdot 0.75 + 0.6 \cdot 0.9 = 0.815$

Problem 3: What is the probability of this constellation

 $(5 \times no \ accident, 2 \times accident)?$

$$p = 0.815^5 \cdot 0.185^2 = 0.01$$

Gaussian Mixture Model

Input: number k of clusters

Parameters of the distribution:

- A priori probability p_i
- A «center» *c*_i
- A 2 × 2 covariance matrix S_i

Properties of the covariance matrix:

- Eigenvectors denote the main directions of the «spread of the data»
- Eigenvalues express the length of the corresponding eigenvectors

Silhouette value

The *silhouette value* is one of many measures to determine how good a clustering is. The larger the value, the better the point fits in the cluster.

$$s(p) = \frac{b(p) - a(p)}{\max(a(p), b(p))}$$

- a(p) average *dist* to other points in cluster
- b(p) minimum average *dist* to points in a different cluster

Classification and Pattern Recognition

Nearest Mean

- 1. Determine the mean of each cluster
- For each new point *p*:
 Find the cluster whose mean has the shortest distance to *p* and assign *p* to this cluster

Pros and Cons

- Efficiently computable
- No further knowledge about the structure of the data is needed
- influenced by outliers
- mean is not always representative

(K-) Nearest Neighbor Classifier

For each new point p:
 Determine the category point p is nearest to assign p to its cluster

Pros and Cons

- More robust towards outliers
- No further knowledge about the structure of the data is needed
- computationally expensive to find the nearest neighbour
- failure in case of different "spread of data" for different directions

Bayes Classifier based on the Gaussian Mixture Model

Use a distance measure with an appropriate scaling (with respect to the corresponding eigenvalues).

Implementation

- Assign each point *p* according to the *maximum likelihood principle*
 - For each class *i* determine the *probability density* pd_i(p) of p according to the corresponding distribution
 - Assign p to the class i for which pd_i(p) is maximized

Support Vector Machines

Basic Idea

- Finding the best separating line between two classes of data
- Maximize the margin between the line and the data
- Not linearly separable \rightarrow Transform into higher dimensional space

Linearly separable problem

- Representation of a 2D line: ax + b or $(a -1) \cdot {\binom{x}{y}} + b = 0$
- Representation of a hyperplane $\omega^T x + b = 0$
- Goal: maximize *m* of the margin.
- It can be shown: $m = \frac{2}{||w||}$

Compression and Detection: Technical Aspects and Linear Algebra

Goal Reduce the number of dimensions without reducing the "information-content" too much.

Covariance Matrix

large eigenvalue

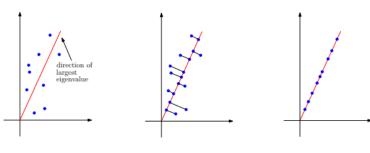
- Its eigenvectors express the main directions of the «spread of data»
- A large eigenvalue indicates a large amount of spread

Generalization to higher dimesions

• Determine *eigenvectors* with largest eigenvalues

The *covariance matrix C* contains characteristic information

• Maintain only components corresponding to those eigenvectors



Principle Component Analysis (PCA) Summary

- 1. Represent images as vectors
- 2. Compute mean and covariance matrix of the corresponding data
- 3. Normalize data by subtracting the mean-vector from each input-vector
- 4. Compress the data by maintaining only the components corresponding to the *largest eigenvectors*
- 5. Transform the vectors back

Change of Basis

Remark: A square matrix M whose colums are orthonormal vectors has the property that $M^{-1} = M^T$.

Transformation from standard basis B to a new basis M

$$\begin{pmatrix} \tilde{r}_1 \\ \vdots \\ \tilde{r}_d \end{pmatrix} = M^{-1} \cdot \begin{pmatrix} r_1 \\ \vdots \\ r_d \end{pmatrix}, \qquad M = (v_1 | v_2 | \cdots | v_n)$$

Reverse transformation from basis M to B

 $\begin{pmatrix} r_1 \\ \vdots \\ r_d \end{pmatrix} = M \cdot \begin{pmatrix} \tilde{r}_1 \\ \vdots \\ \tilde{r}_d \end{pmatrix}$

Using a subset of the basis vectors gives *lossy transformations*

Example with kept vectors = 3

• Transformation
$$\begin{pmatrix} \tilde{r}_1 \\ \vdots \\ \tilde{r}_3 \end{pmatrix} = (v_1 | v_2 | v_3)^T \cdot \begin{pmatrix} r_1 \\ \vdots \\ r_d \end{pmatrix}$$

• Reverse transformation $\begin{pmatrix} r_1 \\ \vdots \\ r_d \end{pmatrix} = (v_1 | v_2 | v_3) \cdot \begin{pmatrix} \tilde{r}_1 \\ \vdots \\ \tilde{r}_3 \end{pmatrix}$

A measure of similarity of two images

Sum of squared differences (SSD) $I = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad J = \begin{pmatrix} 1 & 3 & 5 \\ 7 & 9 & 11 \end{pmatrix}$ $(1-1)^2 + (2-3)^2 + (3-5)^2 + (4-7)^2 + (5-9)^2 + (6-11)^2 = 55$

Compression and Detection: PCA Algorithm

Step 1: Preprocessing $C \coloneqq covariance \ matrix \ of \ \underbrace{\begin{pmatrix} \cdots \\ \cdots \\ \vdots \\ d \end{pmatrix}}_{d} \leftarrow \ data \ 1 \\ \leftarrow \ data \ 2 \\ \vdots \\ \leftarrow \ data \ N$

 $V_1, V_2, \dots, V_k \coloneqq eigenvectors \ of \ C \ with \ the \ largest \ eigenvalues$

Step 2: Adjusting data

- Calculate the mean-vector
- Adjust data by subtracting the mean-vector from each data point

Step 3: Tranforming a data point

- Represent the adjusted data point as column vector
- Transform data point p via lossy change of basis

$$\begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_k \end{pmatrix} = (v_1 | v_2 | \cdots | v_k)^T \cdot \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_d \end{pmatrix}$$

Step 4: Reprojecting back to the original coordinate system

• Reproject back via lossy change of basis

$$\begin{pmatrix} \tilde{p}_1 \\ \tilde{p}_2 \\ \vdots \\ \tilde{p}_d \end{pmatrix} = (v_1 | v_2 | \cdots | v_k) \cdot \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_k \end{pmatrix}$$

Step 5: Add back mean

<u>Example</u>	x	V		
Stop 1. Droprocessing	2.5	2.4		
Step 1: Preprocessing				
(0.6779)	2.2	2.9		
• For $k = 1: V_1 = \begin{pmatrix} 0.6779\\ 0.7352 \end{pmatrix}$				
×0.7 <i>332</i> /	3.1	3.0		
Step 2: Adjusting data	2.3	2.7		
	2	1.6		
• Mean vector = (1.81, 1.91)	1	1.1		
	1.5	1.6		
Result for the first three datapoints	1.1	0.9		
x y x y				
2.5 2.4 0.6900 0.4900				
data: 0.5 0.7 adj.: -1.3100 -1.2100				
2.2 2.9 0.3900 0.9900				

Advantages

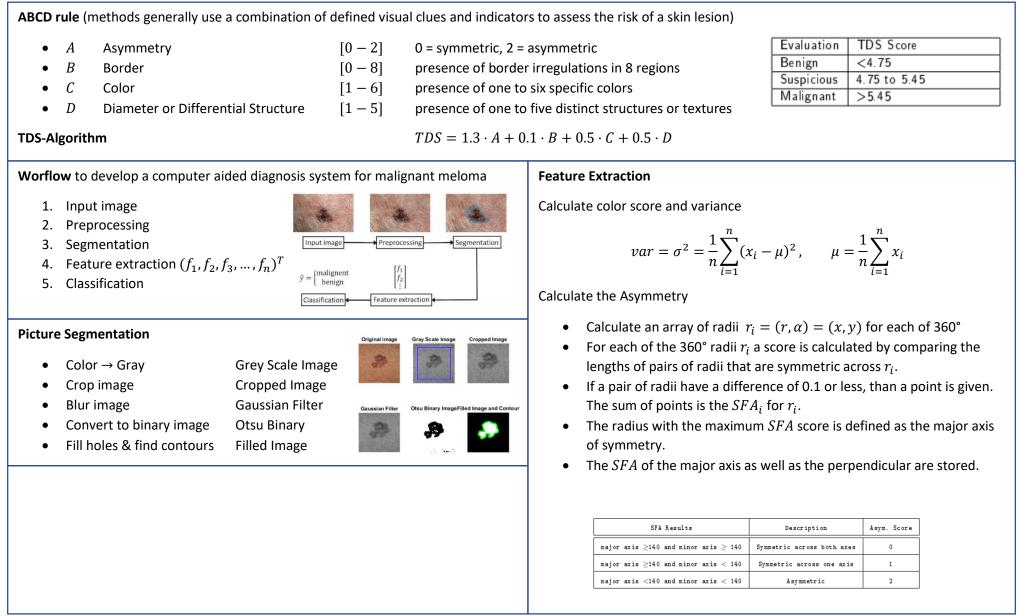
Often, only a few eigenvectors are necessary to get a good compression \rightarrow allows to *efficiently store and compare* images.

Matching will typically work better because only main characteristics are preserved and irrelevant details are discarded.

Drawback

Differences caused by varying illumination can become more substantial than differences between faces.

An Application: Skin Cancer Detection



An Application: Skin Cancer Detection

Confusi	on Matrix : Row	is show the true class and colums show the predicted class.		
•	Accuracy Precision	correct predictions / total predictions $\frac{TP+TN}{TP+TN+FP+FN}$ $\frac{TP}{TP+FP}$	0	51 True Negative (T Reality: Benign ML model predia
Classific	ation		True Class	
•	ROC FPR / TPR	Receiver Operating Characteristics Curve True / False Positive Rate	1	13 False Negative (f Reality: Maligna ML model predic
• AUC Area Under Curve: number is a measure of the overall quality of the classifier				0

- Basic unit of a multilayer perceptron (MLP) •
- Weighted sum of signals arriving at the input is subjected to a transfer function
- Several different transfer functions can be used. The one that is preferred in this chapter is the so-called sigmoid defined by the following formula where Σ is ٠ the weighted sum of inputs

False Positive (FP) Reality: Benign ML model predicted: Malig

$$f(\Sigma) = \frac{1}{1 + e^{-\Sigma}}$$

Artificial Neural Network: Error

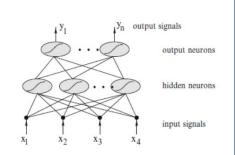
Mean square error (MSE): The mean square error is defined using differences between the elements of the output vector y and the target vector t:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (t_i - y_i)^2$$

Neural Networks

MLP Multilayer Perceptron

- There is no communication between neurons of the same layer, adjacent layers are fully interconnected
- Each link is associated with a weight
 - *w_{ii}*: weight of the link form the j-th hidden neuron to the i-th output neuron
 - w_{kj} : weight of the link from the k-th attribute to the j-th hidden neuron



Forward Propagation

- $x = (x_1, x_2, ..., x_n)$: input attribute vector (e.g. x_k is one of the features calculate for one image)
- The values x_k are multiplied by the weights associated with the links
- The *j*-th hidden neuron then receives as input the weighted sum

 $\Sigma_k w_{kj}^{(2)} x_k$

And subjects this sum to the sigmoid

$$f\left(\Sigma_k w_{kj}^{(2)} x_k\right)$$

• The *i-th* output neuron then receives the weighted sum of the values coming from the hidden neurons and, agani subjects it to the transfer function.

$$y_i = f\left(\sum_j w_{ji}^{(1)} \cdot f\left(\sum_k w_{kj}^{(2)} x_k\right)\right)$$

Theorem: The so-called universality theorem is that the multilayer perceptron can in principle be used to address just about any classification problem.

Example Neural Network - Multilayer Perceptron Inputs of hidden-layer neurons Outputs of hidden layer neurons Inputs of output-layer neurons Outputs of output-layer neurons Outputs of output-layer neurons $y_{1}=f\left(z_{1}^{(2)}\right)=\frac{1}{1+e^{-(0.75)}}=0.32$ $y_{1}=f\left(z_{2}^{(1)}\right)=\frac{1}{1+e^{-(0.19)}}=0.45$ $y_{1}=f\left(z_{1}^{(1)}\right)=\frac{1}{1+e^{-(0.19)}}=0.45$ $y_{1}=0.54$

Partial Differential Equations - PDE

Partial derivatives of first order

Consider a scalar-valued function y = f(x, y). f_x and f_y are the partial derivatives of f with respect to x and y.

•
$$\frac{\partial f}{\partial x}(x, y) = f_x = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

• $\frac{\partial f}{\partial y}(x, y) = f_y = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$

The *gradient* of the function f is defined as

•
$$grad(f) = \nabla f = \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right)$$

where ∇ is called *Nabla-Operator*.

Partial derivatives of higher order

$$z = f(x, y),$$
 $f_x = \frac{\partial f}{\partial x},$ $f_y = \frac{\partial f}{\partial y}$

Partial derivatives of second order

$$f_{xx} = \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}, \qquad f_{yy} = \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$
$$f_{xy} = \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x \partial y}, \qquad f_{yx} = \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

Schwartz' Theorem

Consider the function $f: \mathbb{R}^n \to \mathbb{R}$. If the mixed partial derivatives exist and are continuous at a point $x_0 \in \mathbb{R}^n$, then they are equal at x_0 regardless of the order in which they are taken.

Laplacian

Consider a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}, y = f(x_1, ..., x_n)$

The Laplacian operator Δ is defined as

$$\Delta = \nabla \cdot \nabla = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)$$

i.e.

$$\Delta f = f x_1 x_1 + f x_2 x_2 + \dots + f x_n x_n = \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right)$$

Fourier Series

Let $f: \mathbb{R} \to \mathbb{R}$ be a periodic continuous function with angular frequency ω_0 and period $T = \frac{2\pi}{\omega_0}$. The Fourier series of f(x) is defined as

$$f(x) = \frac{A_0}{2} + \sum_{k=1}^{\infty} [A_k \cdot \cos(k \cdot \omega_0 \cdot x) + B_k \cdot \sin(k \cdot \omega_0 \cdot x)]$$

•
$$\omega_0 = \frac{2\pi}{T}$$
 angular frequency of the first harmonic oscillation
• $k \cdot \omega_0$ angular frequency of the $k - th$ harmonic oscillation

The Fourier coefficients of
$$f$$
 can be calculated according to

•
$$A_0 = \frac{2}{T} \int_{(T)}^{\Box} f(x) \cdot dx,$$

• $A_k = \frac{2}{T} \int_{(T)}^{\Box} f(x) \cdot \cos(k \cdot \omega_0 \cdot x) \cdot dx$
• $B_k = \frac{2}{T} \int_{(T)}^{\Box} f(x) \cdot \sin(k \cdot \omega_0 \cdot x) \cdot dx$

Partial Differential Equations - PDE

Ordinary Differential Equation (ODE) Partial Differential Equation (PDE) $\frac{d^2\Theta}{dt^2} + \frac{g}{I} \cdot \sin(\Theta) = 0$ $\Delta \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ Partial Differential Equation (PDE) - Definition A partial differential equation PDE relates the partial derivatives of a function of two or more independent variables together. The order of the highest partial derivative is the order of the equation. We say a function is a solution to a PDE if it satisfies the equation and any side conditions given. Linear, homogenous PDE of first order Example: Heat Transfer Equation If the coefficients a = a(x, y), b = b(x, y) are continuously differentiable functions The heat transfer equation is a parabolic PDE that describes the temperature $a: D \subset \mathbb{R}^2 \to \mathbb{R}$ and $b: D \subset \mathbb{R}^2 \to \mathbb{R}$, then the PDE for u = u(x, y)variation u as a function of time and special coordinates (k is a constant describing thermal diffusivity). $a(x, y) \cdot u_x + b(x, y) \cdot u_y = 0$ Heat Equation in 1d Is a linear homogenous PDE of first order. Homogenous means that the right-hand We search for a twice continuously differentiable function u = u(x, t) which side of the PDE vanishes. solves the heat transfer equation Linear PDE of second order and their classification u(x,0) = f(x) $u_t = k u_{xx}$ Consider the continuously differentiable functions $a, b, c, d, e, f, g: D \subset \mathbb{R}^2 \to \mathbb{R}$. Subject to the initial condition The PDE for u = u(x, y)u(x,0) = f(x) $a(x, y) \cdot u_{xx} + 2b(x, y) \cdot u_{xy} + c(x, y) \cdot u_{yy} =$ u(x,0) = 0u(x,L) = 0And the constant-value boundary conditions $d(x, y) \cdot u_x + e(x, y) \cdot u_y + f(x, y) \cdot u + g(x, y)$ $u(0,t) = 0, \qquad u(L,t) = 0, \qquad x \in [0,L],$ $t \ge 0$ Is a linear (non-homogenous) PDE of second order. The linear PDE is said to be Parabolic if $b^2 - ac = 0$ e.g. heat flow and diffusion-type Hyperbolic if $b^2 - ac > 0$ e.g. vibrating and wave motion if $b^2 - ac < 0$ e.g. steady-state potential-type Elliptic •

Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation.

The aim of CFD simulations is to determine...

- Velocity field u = u(x, y, z, t)
- Pressure distribution p = p(x, y, z, t)
- Density distribution $\rho = \rho(x, y, z, t)$
- Temperature distribution T = T(x, y, z, t)

... of a fluid flow at any given point (x, y, z) and at any given time t.

Conversation laws of physics

1. The mass of a fluid is conserved.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

2. The rate of change of momentum equals the sum of the forces on a fluid particle.

$$\dot{\boldsymbol{p}} = m\dot{\boldsymbol{v}} = \sum_{i=1}^{n} \boldsymbol{F}_{i}$$

3. The rate of change of energy is equal to the sum of the rate of heat addition to the rate of work done on a fluid particle.

To derive the governing PDE for each conservation law, consider a small element of fluid with sides δx , δy and δz .

- Volume $V = \delta x \delta y \delta z$
- Mass $m = \rho V = \rho \delta x \delta y \delta z$

General Structure of Governing Equations

- Accumulation Temporal rate of change of a given quantity within V
- Convection Transport of the quantity due to any existing velocity field
- Diffusion Transport of the quantity due to the presence of and gradients of that quantity.

$$\frac{\partial \rho \phi}{\partial t}_{Accumulation} + \underbrace{\nabla \cdot (\rho \boldsymbol{u} \phi)}_{Convection} = \underbrace{\nabla \cdot (\Gamma \nabla \phi)}_{Diffusion} + \underbrace{S_{\phi}}_{Source}$$

Rate of increase	Net rate of flow	Rate of increase	Rate of increase
of ϕ of fluid	+ of ϕ out of	$=$ of ϕ due to	+ of ϕ due to
element	fluid element	diffusion	sources

Full Set of Governing Equations

- Conservation of mass $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$
- Conservation of momentum (Navier Stokes)

•
$$\frac{\partial \rho u}{\partial t} + \nabla \cdot (\rho u u) = \nabla \cdot (\mu \nabla u) - \frac{\partial p}{\partial x} + S_{Mx}$$

• $\frac{\partial \rho v}{\partial v} + \nabla \cdot (\rho u v) = \nabla \cdot (\mu \nabla v) - \frac{\partial p}{\partial x} + S_{Mx}$

•
$$\frac{\partial \rho w}{\partial t} + \nabla \cdot (\rho u w) = \nabla \cdot (\mu \nabla w) - \frac{\partial \rho}{\partial z} + S_{Mz}$$

- Conservation of energy $\frac{\partial \rho i}{\partial t} + \nabla \cdot (\rho u i) = \nabla \cdot (k \nabla T) p \nabla u + S_{Dis}$
- Equations of state
 - $p = p(\rho, T)$
 - $i = i(\rho, T)$

OpenFoam

General Commands	Multiple Cores				
Change to RUN directory	Create decomposePar file				
cd \$FOAM_RUN	cp -r \$FOAM_UTILITIES/parallelProcessing/decomposePar .				
Copy tutorial	Create decomposeParDict (copy from pitzDaily/system or damBreak/system)				
cp -r \$FOAM_TUTORIALS/name .					
Change to newly created directory	Run DecomposePar				
cd name	decomposePar				
Create mesh of case (= name)	Run the case in parallel using the solver XXX				
case/blockMesh	mpirun -np 4 XXX -parallel tee log				
Check mesh case (= name)	reconstruct the result from the single processors				
case/checkMesh	reconstructPar				
View mesh	Have a look at the result with paraFoam				
paraFoam	paraFoam &				
Run commands in Allrun					
./Allrun					
Pipeline Browser	XLaunch				