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What is Scientific Computing? 

• Algorithms and modeling and simulation 

• Computer and information science 

• The computing infrastructure 

Gaining Scientific Knowledge 

The classical scientific process 

• Characterization of the real world 

▪ Observation 

▪ Quantification/measurement 

• Hypothesis 

▪ Theory 

▪ model 

• Prediction 

▪ Consequences/logical deducation from hypothesis/model 

• Experiment 

▪ Verification/falsification 

▪ Discrepancies might lead to improved model 

 
High Performance Computing (HPC) 

Parallel processing for running advanced application programs efficiently, reliably 

and quickly. 

 

 

When is a Simulation required? 

• Replacing analytical solvers 

• Replacing Experiments 

• Replacing analytical solvers and experiments 
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Introduction - Population Models 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Population Models and ODE 

Population models describe the interaction between 𝑘 ∈ ℕ different species 𝑦1, … , 𝑦𝑘  in 

an ecological or social system.  

They are often described as an initial value problem based on a set of Ordinary 

Differential Equations (ODE) of first order. 

𝑑

𝑑𝑡
𝑦 = 𝑓൫𝑡, 𝑦ሺ𝑡ሻ൯ 

Where 

𝑦ሺ𝑡ሻ = ቌ

𝑦1ሺ𝑡ሻ

⬚
𝑦𝑛ሺ𝑡ሻ

ቍ , 𝑓൫𝑡, 𝑦ሺ𝑡ሻ൯ = ቌ

𝑓1൫𝑡, 𝑦ሺ𝑡ሻ൯

⬚
𝑓𝑛൫𝑡, 𝑦ሺ𝑡ሻ൯

ቍ , 𝑦ሺ𝑡 = 𝑡0ሻ = 𝑦ሺ0ሻ = ቌ

𝑦1ሺ𝑡0ሻ

⬚
𝑦𝑛ሺ𝑡0ሻ

ቍ 

Such ODEs’ can be solved numerically, e.g. using the Runge-Kutta method. 

Such models often depend on plausability considerations rather than natural laws. 

Therefore, it is important to compare the outcome of such numerical simulations with 

real data. 

Population Model 

Let us consider the species 𝑦ሺ𝑡ሻ as a function of time 𝑡 without any interaction with its 

environment: 

• 𝑦ሺ𝑡ሻ: head count at time 𝑡 

• 𝑏 > 0: birth rate 

• 𝑚 > 0: mortality rate 

• 𝑏 −𝑚: growth rate 

We can describe the development of 𝑦ሺ𝑡ሻ through an ODE of first order: 

𝑑𝑦

𝑑𝑡
= 𝑏 ⋅ 𝑦 − 𝑚 ⋅ 𝑦 = ሺ𝑏 −𝑚ሻ ⋅ 𝑦 

Preditor-Prey Model 

In its original form, it describes a theory of competition between two 

species. Applied to an interaction between a predator and its prey, we 

can reduce the model to the following assumptions: 

Two populations 𝑦1ሺ𝑡ሻ = prey and 𝑦2ሺ𝑡ሻ = predator 

• 𝑦1ሺ𝑡ሻ increases with the specific net rate 𝑔1 

• 𝑦2ሺ𝑡ሻ dies with the specific net rate 𝑔2 

The prey is eaten by the predator, which results in an increase of 

predators and a corresponding decrease of prey by 𝑔3 ⋅ 𝑦1ሺ𝑡ሻ ⋅ 𝑦2ሺ𝑡ሻ. 

Mathematically, the model is described by 

•
𝑑𝑦1

𝑑𝑡
= 𝑔1𝑦1 − 𝑔3𝑦1𝑦2 

•
𝑑𝑦2

𝑑𝑡
= 𝑔2𝑦2 + 𝑔3𝑦1𝑦2 

Or as a two dimensional vectors 

൮

𝑑𝑦1
𝑑𝑡
𝑑𝑦2
𝑑𝑡

൲ = ቀ
𝑔1𝑦1 − 𝑔3𝑦1𝑦2
𝑔2𝑦2 + 𝑔3𝑦1𝑦2

ቁ 

Of special interest is the so-called fixed point, where both derivatives 

vanish: 

•
𝑑𝑦1

𝑑𝑡
= 𝑔1𝑦1 − 𝑔3𝑦1𝑦2 = 0 → 𝑦෤2 =

𝑔1

𝑔3
 

•
𝑑𝑦2

𝑑𝑡
= 𝑔2𝑦2 + 𝑔3𝑦1𝑦2 = 0 → 𝑦෤1 =

𝑔2

𝑔3
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Basic Transformations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Representing translations as matrix multiplications 

Translation by ሺ𝑢; 𝑣ሻ 

ቆ
𝑥𝑛𝑒𝑤
𝑦𝑛𝑒𝑤
1

ቇ = ൭
1 0 𝑢
0 1 𝑣
0 0 1

൱ ⋅ ቆ
𝑥𝑜𝑙𝑑
𝑦𝑜𝑙𝑑
1
ቇ 

Scaling by a factor 𝛼 

ቆ
𝑥𝑛𝑒𝑤
𝑦𝑛𝑒𝑤
1

ቇ = ൭
𝛼 0 0
0 𝛼 0
0 0 1

൱ + ቆ
𝑥𝑜𝑙𝑑
𝑦𝑜𝑙𝑑
1
ቇ 

Rotation around a point ሺ𝑎; 𝑏ሻ 

ቆ
𝑥𝑛𝑒𝑤
𝑦𝑛𝑒𝑤
1

ቇ = ൭
1 0 𝑎
0 1 𝑏
0 0 1

൱ ⋅ ൭
cos⁡ሺ𝜃ሻ −sin⁡ሺ𝜃ሻ 0
sin⁡ሺ𝜃ሻ cos⁡ሺ𝜃ሻ 0
0 0 1

൱ ⋅ ൭
1 0 −𝑎
0 1 −𝑏
0 0 1

൱ ⋅ ቆ
𝑥𝑜𝑙𝑑
𝑦𝑜𝑙𝑑
1
ቇ 
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Image Processing using Filters   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Goal Restore and or Modify Images 

Moving average 

Replace each pixel value with the weighted average of its neighborhood. 

𝐼𝑚 = 𝐼𝑚𝑎𝑔𝑒, 𝐹 = 𝐾𝑒𝑟𝑛𝑒𝑙⁡𝐹𝑖𝑙𝑡𝑒𝑟, 𝑙𝑒𝑛ሺ𝐹ሻ = 2𝑁 + 1 

𝐽ሺ𝑥, 𝑦ሻ = ෍ ෍ 𝐼𝑚ሺ𝑥 + 𝑘, 𝑦 + 𝐼ሻ ⋅ 𝐹ሺ𝑁 + 𝑘, 𝑁 + 𝐼ሻ

𝑁

𝐼=−𝑁

𝑁

𝑘=−𝑁

 

 

Key Properties 

• Shift invariance 𝐹൫𝑠ℎ𝑖𝑓𝑡ሺ𝐼ሻ൯ = 𝑠ℎ𝑖𝑓𝑡൫𝐹ሺ𝐼ሻ൯ 

• Linearity* 𝐹ሺ𝐼1 + 𝐼2ሻ = 𝐹ሺ𝐼1ሻ + 𝐹ሺ𝐼2ሻ 

Problem 

Not specified for pixels close to the edge. For example, if the neighborhood of the 

marked pixel is outside of the boundary. 

Solutions 

• Treat pixels outside as 0 

• Wrap around pixels from the opposite edge 

• Treat like nearest pixel 
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Image Processing using Filters   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Median Filter 

Median filter operates over a window by selecting the median intensity in the 

window.  

Average Filter (Blur) 

 

 

Sharpening Filter (Sharpening) 

• 2 * original image – blurred image 

Gaussian Filter (Systematic Blur) 

Choose the weights of the neighborhood pixels such that their contribution 

decreases with growing distance from the center. 

Density function of Gaussian distribution 

𝐺𝜎 =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2 , 2 ⋅ 𝜎 ≈ 0.5 ⋅ 𝑙𝑒𝑛ሺ𝐹ሻ 

Gradient Filter 

• Gradient 𝑔𝑟𝑎𝑑ሺ𝑓ሻ Measures how the function is changing 

• Magnitude ȁ𝑔𝑟𝑎𝑑ሺ𝑓ሻȁ Measures how quickly the function is changing 

𝑔𝑟𝑎𝑑ሺ𝑓ሻ = ൮

𝛿𝑓

𝛿𝑥
⁡

𝛿𝑓

𝛿𝑥

൲ , ȁ𝑔𝑟𝑎𝑑ሺ𝑓ሻȁ = ඨ൬
𝛿𝑓

𝛿𝑥
൰
2

+ ൬
𝛿𝑓

𝛿𝑦
൰
2
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Naive Bayes Approach  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Bayes Filter 

𝑃ሺ𝐴ȁ𝐵ሻ =
𝑃ሺ𝐵ȁ𝐴ሻ ⋅ 𝑃ሺ𝐴ሻ

𝑃ሺ𝐵ሻ
 

Formal Description 

• Events are described by a feature vector 𝑋 = ሺ𝑋1, … , 𝑋𝑛ሻ 

• Variables 𝑋𝑖  have to be independent 

• Prediction Variable 𝑌 ∈ {0,1} 

Calculated estimations 

• Step 1.1 𝑃ሺ𝑋ȁ𝑌 = 0ሻ ς 𝑃ሺ𝑋𝑖ȁ𝑌 = 0ሻ𝑛
𝑖=1  

• Step 1.2 𝑃ሺ𝑋ȁ𝑌 = 1ሻ ς 𝑃ሺ𝑋𝑖ȁ𝑌 = 1ሻ𝑛
𝑖=1  

• Step 2.1 𝑃ሺ𝑌 = 0ȁ𝑋ሻ 
𝑃ሺ𝑋ȁ𝑌ሻ⋅𝑃ሺ𝑌=0ሻ

𝑃ሺ𝑋ሻ
 

• Step 2.2 𝑃ሺ𝑌 = 1ȁ𝑋ሻ 
𝑃ሺ𝑋ȁ𝑌ሻ⋅𝑃ሺ𝑌=1ሻ

𝑃ሺ𝑋ሻ
 

• Step 3.1 𝑃ሺ𝑌 = 0ȁ𝑋ሻ > 𝑃ሺ𝑌 = 1ȁ𝑋ሻ → 𝑝𝑟𝑒𝑑𝑖𝑐𝑡⁡𝑌 = 0 

• Step 3.2 𝑃ሺ𝑌 = 0ȁ𝑋ሻ < 𝑃ሺ𝑌 = 1ȁ𝑋ሻ → 𝑝𝑟𝑒𝑑𝑖𝑐𝑡⁡𝑌 = 1 

 

 

Prediction  - Toy example 

𝑋 ≔ ൭𝑆𝑢𝑛𝑛𝑦ᇣᇤᇥ
≔𝑋1

, 𝐶𝑜𝑜𝑙ถ
≔𝑋2

, 𝐻𝑖𝑔ℎᇣᇤᇥ
≔𝑋3

, 𝑆𝑡𝑟𝑜𝑛𝑔ᇣᇧᇤᇧᇥ
≔𝑋4

൱ 

Step 1  

𝑃ሺ𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠ሻ =
9

14
, 𝑃ሺ𝑃𝑙𝑎𝑦 = 𝑁𝑜ሻ =

5

14
 

𝑃ሺ𝑋𝑖ȁ𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠ሻ =ෑ𝑃ሺ𝑋𝑖ȁ𝑌 = 𝑌𝑒𝑠ሻ

𝑛

𝑖=1

=
2

9
⋅
3

9
⋅
3

9
⋅
3

9
= 0.00823, 𝑓𝑜𝑟⁡𝑖 = 1,… ,4⁡⁡ 

𝑃ሺ𝑋𝑖ȁ𝑃𝑙𝑎𝑦 = 𝑁𝑜ሻ =ෑ𝑃ሺ𝑋𝑖ȁ𝑌 = 𝑁𝑜ሻ

𝑛

𝑖=1

=
3

5
⋅
1

5
⋅
4

5
⋅
3

5
= 0.0576, 𝑓𝑜𝑟⁡𝑖 = 1,… ,4⁡⁡ 

Step 2 

𝑃ሺ𝑋𝑖 ∧ 𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠ሻ = 0.00823 ⋅
9

14
= 0.0053 

𝑃ሺ𝑋𝑖 ∧ 𝑃𝑙𝑎𝑦 = 𝑁𝑜ሻ = 0.0576 ⋅
5

14
= 0.0206 

𝑃ሺ𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠ȁ𝑋𝑖ሻ =
𝑃ሺ𝑋ȁ𝑌ሻ ⋅ 𝑃ሺ𝑌 = 𝑌𝑒𝑠ሻ

𝑃ሺ𝑋𝑖ሻ
=
𝑃ሺ𝑋𝑖 ∧ 𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠ሻ

𝑃ሺ𝑋𝑖ሻ
=

0.0053

0.02186
= 0.242 

𝑃ሺ𝑃𝑙𝑎𝑦 = 𝑁𝑜ȁ𝑋𝑖ሻ =
𝑃ሺ𝑋ȁ𝑌ሻ ⋅ 𝑃ሺ𝑌 = 𝑁𝑜ሻ

𝑃ሺ𝑋𝑖ሻ
=
𝑃ሺ𝑋𝑖 ∧ 𝑃𝑙𝑎𝑦 = 𝑁𝑜ሻ

𝑃ሺ𝑋𝑖ሻ
=

0.0206

0.02186
= 0.942 

Step 3 Compare the two results of Step 2 and choose the more likely event. 

max൫𝑃ሺ𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠ȁ𝑋𝑖ሻ, 𝑃ሺ𝑃𝑙𝑎𝑦 = 𝑁𝑜ȁ𝑋𝑖ሻ൯ = maxሺ0.242, 0.942ሻ = 𝑃ሺ𝑃𝑙𝑎𝑦 = 𝑁𝑜ȁ𝑋𝑖ሻ 

Predict ሺ𝑃𝑙𝑎𝑦⁡ = ⁡𝑁𝑜ሻ for 𝑋𝑖  
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Clustering (Unsupervised Learning)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

K-Means Clustering 

Step 1: Choose 𝑘 objects as initial cluster centers. 

Step 2: Assign each data point to the cluster which has the closest mean point (centroid) under chosen distance metric. 

Step 3: When all data points have been assigned, recalculate the positions of 𝑘 centroids (mean points). 

Step 4: Repeat steps 2 and 3 until the centroids do not change anymore. 

 

Maximum Likelihood Estimation 

Given the following example 

 

 

 

Problem 1: What is the most likely profession of a person who had an accident? 

• 𝑝ሺ𝑎𝑐𝑟𝑜𝑏𝑎𝑡 ∧ 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡ሻ = 0.1 ⋅ 0.5 = 0.05 

• 𝑝ሺ𝑙𝑢𝑚𝑏𝑒𝑟𝑗𝑎𝑐𝑘 ∧ 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡ሻ = 0.3 ⋅ 0.25 = 𝟎. 𝟎𝟕𝟓 

• 𝑝ሺ𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟⁡𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡 ∧ 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡ሻ = 0.6 ⋅ 0.1 = 0.06 

Problem 2: What is the probability that a random person has an accident? 

• 𝑝ሺ𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡ሻ ⁡⁡⁡⁡⁡⁡= 0.1 ⋅ 0.5 + 0.3 ⋅ 0.25 + 0.6 ⋅ 0.1 = 0.185 

• 𝑝ሺ𝑛𝑜⁡𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡ሻ = 0.1 ⋅ 0.5 + 0.3 ⋅ 0.75 + 0.6 ⋅ 0.9 = 0.815 

Problem 3: What is the probability of this constellation  

       ሺ5 × 𝑛𝑜⁡𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡, 2 × 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡ሻ? 

𝑝 = 0.8155 ⋅ 0.1852 = 0.01 

 

Gaussian Mixture Model 

Input: number 𝑘 of clusters 

Parameters of the distribution: 

• A priori probability 𝑝𝑖  

• A «center» 𝑐𝑖 

• A 2 × 2 covariance matrix 𝑆𝑖 

Properties of the covariance matrix: 

• Eigenvectors denote the main directions of the «spread of the data» 

• Eigenvalues express the length of the corresponding eigenvectors 

Silhouette value 

The silhouette value is one of many measures to determine how good a 

clustering is. The larger the value, the better the point fits in the cluster. 

𝑠ሺ𝑝ሻ =
𝑏ሺ𝑝ሻ − 𝑎ሺ𝑝ሻ

maxሺ𝑎ሺ𝑝ሻ, 𝑏ሺ𝑝ሻሻ
 

• 𝑎ሺ𝑝ሻ average dist to other points in cluster 

• 𝑏ሺ𝑝ሻ minimum average dist to points in a different cluster 
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Classification and Pattern Recognition  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Nearest Mean 

1. Determine the mean of each cluster 

2. For each new point 𝑝:  

Find the cluster whose mean has the shortest  

distance to 𝑝 and assign 𝑝 to this cluster 

Pros and Cons 

• Efficiently computable 

• No further knowledge about the structure of the data is needed 

• influenced by outliers 

• mean is not always representative 

 

(K-) Nearest Neighbor Classifier 

• For each new point 𝑝:  

Determine the category point 𝑝 is nearest to assign 𝑝 to its cluster 

Pros and Cons 

• More robust towards outliers 

• No further knowledge about the structure of the data is needed 

• computationally expensive to find the nearest neighbour 

• failure in case of different “spread of data” for different directions 

 

Support Vector Machines 

Basic Idea  

• Finding the best separating line between two classes of data 

• Maximize the margin between the line and the data 

• Not linearly separable →⁡Transform into higher dimensional space 

 

 

Linearly separable problem 

• Representation of a 2D line: 𝑎𝑥 + 𝑏 or ሺ𝑎 −1ሻ ⋅ ቀ
𝑥
𝑦ቁ + 𝑏 = 0 

• Representation of a hyperplane 𝜔𝑇𝑥 + 𝑏 = 0 

• Goal: maximize 𝑚 of the margin.  

• It can be shown: 𝑚 =
2

ȁȁ𝑤ȁȁ
 

Bayes Classifier based on the Gaussian Mixture Model 

Use a distance measure with an appropriate scaling (with respect to the 

corresponding eigenvalues). 

 

Implementation 

• Model each class by a multivariate Gaussian distribution. 

• Assign each point 𝑝 according to the maximum likelihood principle 

▪ For each class 𝑖 determine the probability density 𝑝𝑑𝑖ሺ𝑝ሻ of 𝑝 

according to the corresponding distribution 

▪ Assign 𝑝 to the class 𝑖 for which 𝑝𝑑𝑖ሺ𝑝ሻ is maximized 
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Compression and Detection: Technical Aspects and Linear Algebra  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Goal  Reduce the number of dimensions without reducing the “information-content” too much. 

Covariance Matrix 

The covariance matrix 𝐶 contains characteristic information 

• Its eigenvectors express the main directions of the «spread of data» 

• A large eigenvalue indicates a large amount of spread 

Generalization to higher dimesions 

• Determine eigenvectors with largest eigenvalues 

• Maintain only components corresponding to those eigenvectors 

Change of Basis 

Remark: A square matrix 𝑀 whose colums are orthonormal vectors has the 

property that 𝑀−1 = 𝑀𝑇.  

Transformation from standard basis 𝐵 to a new basis 𝑀 

൭
𝑟ǁ1
⋮
𝑟ǁ𝑑

൱ = 𝑀−1 ⋅ ൭

𝑟1
⋮
𝑟𝑑
൱ , 𝑀 = ሺ𝑣1ȁ𝑣2ȁ⋯ ȁ𝑣𝑛ሻ 

Reverse transformation from basis 𝑀 to 𝐵 

൭

𝑟1
⋮
𝑟𝑑
൱ = 𝑀 ⋅ ൭

𝑟ǁ1
⋮
𝑟ǁ𝑑

൱ 

Using a subset of the basis vectors gives lossy transformations  

Example with kept vectors = 3 

• Transformation ൭
𝑟ǁ1
⋮
𝑟ǁ3

൱ = ሺ𝑣1ȁ𝑣2ȁ𝑣3ሻ
𝑇 ⋅ ൭

𝑟1
⋮
𝑟𝑑
൱ 

• Reverse transformation ൭

𝑟1
⋮
𝑟𝑑
൱ = ሺ𝑣1ȁ𝑣2ȁ𝑣3ሻ ⋅ ൭

𝑟ǁ1
⋮
𝑟ǁ3

൱ 

 

Principle Component Analysis (PCA) Summary 

1. Represent images as vectors 

2. Compute mean and covariance matrix of the corresponding data 

3. Normalize data by subtracting the mean-vector from each input-vector 

4. Compress the data by maintaining only the components corresponding to 

the largest eigenvectors 

5. Transform the vectors back 

A measure of similarity of two images 

Sum of squared differences (SSD) 

𝑆𝑆𝐷ሺ𝐼, 𝐽ሻ = 

ሺ1 − 1ሻ2 + ሺ2 − 3ሻ2 + ሺ3 − 5ሻ2 + ሺ4 − 7ሻ2 + ሺ5 − 9ሻ2 + ሺ6 − 11ሻ2 = 55 
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Compression and Detection: PCA Algorithm  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Example 

Step 1: Preprocessing 

• For 𝑘 = 1: 𝑉1 = ቀ
0.6779
0.7352

ቁ 

Step 2: Adjusting data 

• Mean vector = ሺ1.81, 1.91ሻ 

• Result for the first three datapoints 

 

 

... 

Step 1: Preprocessing 

𝐶 ≔ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒⁡𝑚𝑎𝑡𝑟𝑖𝑥⁡𝑜𝑓⁡ ቌ

⋯
⋯
⋮
⋯

ቍ

ᇣᇤᇥ
𝑑

← 𝑑𝑎𝑡𝑎⁡1
← 𝑑𝑎𝑡𝑎⁡2

⋮
← 𝑑𝑎𝑡𝑎⁡𝑁

 

𝑉1, 𝑉2, … , 𝑉𝑘 ≔ 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠⁡𝑜𝑓⁡𝐶⁡𝑤𝑖𝑡ℎ⁡𝑡ℎ𝑒⁡𝑙𝑎𝑟𝑔𝑒𝑠𝑡⁡𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 

Step 2: Adjusting data 

• Calculate the mean-vector  

• Adjust data by subtracting the mean-vector from each data point 

Step 3: Tranforming a data point 

• Represent the adjusted data point as column vector 

• Transform data point 𝑝 via lossy change of basis 

൮

𝑞1
𝑞2
⋮
𝑞𝑘

൲ = ሺ𝑣1ȁ𝑣2ȁ⋯ ȁ𝑣𝑘ሻ
𝑇 ⋅ ൮

𝑝1
𝑝2
⋮
𝑝𝑑

൲ 

Step 4: Reprojecting back to the original coordinate system 

• Reproject back via lossy change of basis 

൮

𝑝෤1
𝑝෤2
⋮
𝑝෤𝑑

൲ = ሺ𝑣1ȁ𝑣2ȁ⋯ ȁ𝑣𝑘ሻ ⋅ ൮

𝑞1
𝑞2
⋮
𝑞𝑘

൲ 

Step 5: Add back mean 

 

Advantages  

Often, only a few eigenvectors are necessary to get a good compression → 

allows to efficiently store and compare images. 

Matching will typically work better because only main characteristics are 

preserved and irrelevant details are discarded. 

Drawback 

Differences caused by varying illumination can become more substantial than 

differences between faces. 
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An Application: Skin Cancer Detection  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ABCD rule (methods generally use a combination of defined visual clues and indicators to assess the risk of a skin lesion) 

• 𝐴  Asymmetry [0 − 2] 0 = symmetric, 2 = asymmetric 

• 𝐵  Border [0 − 8] presence of border irregulations in 8 regions 

• 𝐶  Color [1 − 6] presence of one to six specific colors 

• 𝐷  Diameter or Differential Structure [1 − 5] presence of one to five distinct structures or textures 

TDS-Algorithm 𝑇𝐷𝑆 = 1.3 ⋅ 𝐴 + 0.1 ⋅ 𝐵 + 0.5 ⋅ 𝐶 + 0.5 ⋅ 𝐷 

 
Feature Extraction 

Calculate color score and variance 

𝑣𝑎𝑟 = 𝜎2 =
1

𝑛
෍ሺ𝑥𝑖 − 𝜇ሻ2
𝑛

𝑖=1

, 𝜇 =
1

𝑛
෍𝑥𝑖

𝑛

𝑖=1

 

Calculate the Asymmetry 

• Calculate an array of radii  𝑟𝑖 = ሺ𝑟, 𝛼ሻ = ሺ𝑥, 𝑦ሻ for each of 360°  

• For each of the 360° radii 𝑟𝑖 a score is calculated by comparing the 

lengths of pairs of radii that are symmetric across 𝑟𝑖. 

• If a pair of radii have a difference of 0.1 or less, than a point is given. 

The sum of points is the 𝑆𝐹𝐴𝑖  for 𝑟𝑖. 

• The radius with the maximum 𝑆𝐹𝐴 score is defined as the major axis 

of symmetry. 

• The 𝑆𝐹𝐴 of the major axis as well as the perpendicular are stored. 

Worflow to develop a computer aided diagnosis system for malignant meloma 

1. Input image  

2. Preprocessing 

3. Segmentation 

4. Feature extraction ሺ𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛ሻ
𝑇 

5. Classification 

 

Picture Segmentation 

• Color → Gray Grey Scale Image 

• Crop image Cropped Image 

• Blur image Gaussian Filter 

• Convert to binary image Otsu Binary 

• Fill holes & find contours Filled Image 
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An Application: Skin Cancer Detection  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Confusion Matrix: Rows show the true class and colums show the predicted class. 

• Accuracy correct predictions / total predictions 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

• Precision 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Classification 

• ROC  Receiver Operating Characteristics Curve 

• FPR / TPR True / False Positive Rate 

• AUC Area Under Curve: number is a measure of the overall quality of the classifier 

 
Neurons 

• Basic unit of a multilayer perceptron (MLP) 

• Weighted sum of signals arriving at the input is subjected to a transfer function 

• Several different transfer functions can be used. The one that is preferred in this chapter is the so-called sigmoid defined by the following formula where Σ is 

the weighted sum of inputs 

𝑓ሺΣሻ =
1

1 + 𝑒−Σ
 

Artificial Neural Network: Error 

Mean square error (MSE): The mean square error is defined using differences between the elements of the output vector 𝑦 and the target vector 𝑡: 

𝑀𝑆𝐸 =
1

𝑚
෍ሺ𝑡𝑖 − 𝑦𝑖ሻ

2

𝑚

𝑖=1
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Neural Networks  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

MLP Multilayer Perceptron  

• There is no communication between neurons of the same layer, adjacent layers are fully interconnected 

• Each link is associated with a weight 

▪ 𝑤𝑗𝑖: weight of the link form the j-th hidden neuron to the i-th output neuron 

▪ 𝑤𝑘𝑗: weight of the link from the k-th attribute to the j-th hidden neuron 

 

 

Forward Propagation 

• 𝑥 = ሺ𝑥1, 𝑥2, … , 𝑥𝑛ሻ: input attribute vector (e.g. 𝑥𝑘 is one of the features calculate for one image) 

• The values 𝑥𝑘 are multiplied by the weights associated with the links 

• The j-th hidden neuron then receives as input the weighted sum 

Σ𝑘𝑤𝑘𝑗
ሺ2ሻ𝑥𝑘 

And subjects this sum to the sigmoid 

𝑓 ቀΣ𝑘𝑤𝑘𝑗
ሺ2ሻ𝑥𝑘ቁ 

• The i-th output neuron then receives the weighted sum of the values coming from the hidden neurons and, agani subjects it to the transfer function. 

𝑦𝑖 = 𝑓 ቆ෍ 𝑤𝑗𝑖
ሺ1ሻ ⋅ 𝑓 ൬෍ 𝑤𝑘𝑗

ሺ2ሻ𝑥𝑘
𝑘

൰
𝑗

ቇ 

Theorem: The so-called universality theorem is that the multilayer perceptron can in principle be used to address just about any classification problem. 

 
Example Neural Network - Multilayer Perceptron  

• Inputs of hidden-layer neurons 𝑧1
ሺ2ሻ

= 0.8 ⋅ ሺ−0.1ሻ + 0.1 ⋅ 0.5 = −0.75 𝑧2
ሺ2ሻ

= 0.8 ⋅ 0.1 + 0.1 ⋅ 0.7 = 0.15 

• Outputs of hidden layer neurons ℎ1 = 𝑓 ቀ𝑧1
ሺ2ሻ
ቁ =

1

1+𝑒−ሺ−0.75ሻ
= 0.32 ℎ2 = 𝑓 ቀ𝑧2

ሺ2ሻ
ቁ =

1

1+𝑒−0.15
= 0.54 

• Inputs of output-layer neurons 𝑧1
ሺ1ሻ = 0.54 ⋅ 0.9 + 0.32 ⋅ 0.5 = 0.65 𝑧2

ሺ1ሻ = 0.54 ⋅ −0.3 + 0.32 ⋅ −0.1 = −0.19 

• Outputs of output-layer neurons 𝑦1 = 𝑓 ቀ𝑧1
ሺ1ሻቁ =

1

1+𝑒−0.65
= 0.66 𝑦1 = 𝑓 ቀ𝑧1

ሺ1ሻቁ =
1

1+𝑒−ሺ−0.19ሻ
= 0.45 
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Partial Differential Equations - PDE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Partial derivatives of first order 

Consider a scalar-valued function 𝑦 = 𝑓ሺ𝑥, 𝑦ሻ. 𝑓𝑥 and 𝑓𝑦 are the partial 

derivatives of 𝑓 with respect to 𝑥 and 𝑦. 

•
𝜕𝑓

𝜕𝑥
ሺ𝑥, 𝑦ሻ = 𝑓𝑥 = lim

Δ𝑥→0

𝑓ሺ𝑥+Δ𝑥,𝑦ሻ−𝑓ሺ𝑥,𝑦ሻ

Δ𝑥
 

•
𝜕𝑓

𝜕𝑦
ሺ𝑥, 𝑦ሻ = 𝑓𝑦 = lim

Δ𝑦→0

𝑓ሺ𝑥,𝑦+Δ𝑦ሻ−𝑓ሺ𝑥,𝑦ሻ

Δ𝑦
 

The gradient of the function 𝑓 is defined as  

• 𝑔𝑟𝑎𝑑ሺ𝑓ሻ = ∇𝑓 = ቀ
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
ቁ
𝑇

 

where ∇ is called Nabla-Operator. 

 

Partial derivatives of higher order 

𝑧 = 𝑓ሺ𝑥, 𝑦ሻ, 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
, 𝑓𝑦 =

𝜕𝑓

𝜕𝑦
 

Partial derivatives of second order 

𝑓𝑥𝑥 =
𝜕𝑓

𝜕𝑥
൬
𝜕𝑓

𝜕𝑥
൰ =

𝜕2𝑓

𝜕𝑥2
, 𝑓𝑦𝑦 =

𝜕𝑓

𝜕𝑦
൬
𝜕𝑓

𝜕𝑦
൰ =

𝜕2𝑓

𝜕𝑦2
 

𝑓𝑥𝑦 =
𝜕𝑓

𝜕𝑦
൬
𝜕𝑓

𝜕𝑥
൰ =

𝜕2𝑓

𝜕𝑥𝜕𝑦
, 𝑓𝑦𝑥 =

𝜕𝑓

𝜕𝑥
൬
𝜕𝑓

𝜕𝑦
൰ =

𝜕2𝑓

𝜕𝑦𝜕𝑥
 

 

Schwartz’ Theorem 

Consider the function 𝑓:ℝ𝑛 → ℝ. If the mixed partial derivatives exist and 

are continuous at a point 𝑥0 ∈ ℝ
𝑛, then they are equal at 𝑥0 regardless of 

the order in which they are taken. 

Laplacian 

Consider a scalar-valued function 𝑓:ℝ𝑛 → ℝ,𝑦 = 𝑓ሺ𝑥1, … , 𝑥𝑛ሻ 

The Laplacian operator Δ is defined as  

Δ = ∇ ⋅ ∇=෍
𝜕2

𝜕𝑥𝑖
2

𝑛

𝑖=1

= ቆ
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 +⋯+

𝜕2

𝜕𝑥𝑛
2ቇ 

i.e. 

Δ𝑓 = 𝑓𝑥1𝑥1 + 𝑓𝑥2𝑥2 +⋯+ 𝑓𝑥𝑛𝑥𝑛 = ቆ
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 +⋯+

𝜕2

𝜕𝑥𝑛
2ቇ 

Fourier Series 

Let 𝑓:ℝ → ℝ be a periodic continuous function with angular frequency 𝜔0 and 

period 𝑇 =
2𝜋

𝜔0
. The Fourier series of 𝑓ሺ𝑥ሻ is defined as  

𝑓ሺ𝑥ሻ =
𝐴0
2
+෍[𝐴𝑘 ⋅ cosሺ𝑘 ⋅ 𝜔0 ⋅ 𝑥ሻ + 𝐵𝑘 ⋅ sinሺ𝑘 ⋅ 𝜔0 ⋅ 𝑥ሻ]

∞

𝑘=1

 

• 𝜔0 =
2𝜋

𝑇
 angular frequency of the first harmonic oscillation 

• 𝑘 ⋅ 𝜔0 angular frequency of the 𝑘 − 𝑡ℎ harmonic oscillation 

The Fourier coefficients of 𝑓 can be calculated according to  

• 𝐴0 =
2

𝑇
׬ 𝑓ሺ𝑥ሻ ⋅ 𝑑𝑥
⬚

ሺ𝑇ሻ
,⁡⁡ 

• 𝐴𝑘 =
2

𝑇
׬ 𝑓ሺ𝑥ሻ ⋅ cos⁡ሺ𝑘 ⋅ 𝜔0 ⋅ 𝑥ሻ ⋅ 𝑑𝑥
⬚

ሺ𝑇ሻ
 

• 𝐵𝑘 =
2

𝑇
׬ 𝑓ሺ𝑥ሻ ⋅ sin⁡ሺ𝑘 ⋅ 𝜔0 ⋅ 𝑥ሻ ⋅ 𝑑𝑥
⬚

ሺ𝑇ሻ
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Partial Differential Equations - PDE  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Ordinary Differential Equation (ODE) 

𝑑2Θ

𝑑𝑡2
+
𝑔

𝐿
⋅ sinሺΘሻ = 0 

Linear, homogenous PDE of first order 

If the coefficients 𝑎 = 𝑎ሺ𝑥, 𝑦ሻ, 𝑏 = 𝑏ሺ𝑥, 𝑦ሻ are continuously differentiable functions 

𝑎: 𝐷 ⊂ ℝ2 → ℝ and 𝑏:𝐷 ⊂ ℝ2 → ℝ, then the PDE for 𝑢 = 𝑢ሺ𝑥, 𝑦ሻ 

𝑎ሺ𝑥, 𝑦ሻ ⋅ 𝑢𝑥 + 𝑏ሺ𝑥, 𝑦ሻ ⋅ 𝑢𝑦 = 0 

Is a linear homogenous PDE of first order. Homogenous means that the right-hand 

side of the PDE vanishes. 

Linear PDE of second order and their classification 

Consider the continuously differentiable functions 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔: 𝐷 ⊂ ℝ2 → ℝ. 

The PDE for 𝑢 = 𝑢ሺ𝑥, 𝑦ሻ 

𝑎ሺ𝑥, 𝑦ሻ ⋅ 𝑢𝑥𝑥 + 2𝑏ሺ𝑥, 𝑦ሻ ⋅ 𝑢𝑥𝑦 + 𝑐ሺ𝑥, 𝑦ሻ ⋅ 𝑢𝑦𝑦 = 

𝑑ሺ𝑥, 𝑦ሻ ⋅ 𝑢𝑥 + 𝑒ሺ𝑥, 𝑦ሻ ⋅ 𝑢𝑦 + 𝑓ሺ𝑥, 𝑦ሻ ⋅ 𝑢 + 𝑔ሺ𝑥, 𝑦ሻ 

Is a linear (non-homogenous) PDE of second order.  

The linear PDE is said to be 

• Parabolic if 𝑏2 − 𝑎𝑐 = 0 e.g. heat flow and diffusion-type 

• Hyperbolic  if 𝑏2 − 𝑎𝑐 > 0 e.g. vibrating and wave motion 

• Elliptic if 𝑏2 − 𝑎𝑐 < 0 e.g. steady-state potential-type 

 

Example: Heat Transfer Equation 

The heat transfer equation is a parabolic PDE that describes the temperature 

variation 𝑢 as a function of time and special coordinates (𝑘 is a constant 

describing thermal diffusivity). 

Heat Equation in 1d 

We search for a twice continuously differentiable function 𝑢 = 𝑢ሺ𝑥, 𝑡ሻ which 

solves the heat transfer equation 

𝑢𝑡 = 𝑘𝑢𝑥𝑥 

Subject to the initial condition 

𝑢ሺ𝑥, 0ሻ = 𝑓ሺ𝑥ሻ 

And the constant-value boundary conditions  

𝑢ሺ0, 𝑡ሻ = 0, 𝑢ሺ𝐿, 𝑡ሻ = 0, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0 

Partial Differential Equation (PDE) 

Δ𝜙 =
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 0 

Partial Differential Equation (PDE) -  Definition  

A partial differential equation PDE relates the partial derivatives of a function of two or more independent variables together. The order of the highest partial 

derivative is the order of the equation. We say a function is a solution to a PDE if it satisfies the equation and any side conditions given. 
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Computational Fluid Dynamics  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid 

flow, heat transfer and associated phenomena such as chemical reactions by 

means of computer-based simulation. 

The aim of CFD simulations is to determine… 

• Velocity field 𝒖 = 𝒖ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ 

• Pressure distribution 𝑝 = 𝑝ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ 

• Density distribution 𝜌 = 𝜌ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ 

• Temperature distribution 𝑇 = 𝑇ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ 

…of a fluid flow at any given point ሺ𝑥, 𝑦, 𝑧ሻ and at any given time 𝑡. 

Conversation laws of physics 

1. The mass of a fluid is conserved. 

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ ሺ𝜌𝒖ሻ = 0 

2. The rate of change of momentum equals the sum of the forces on a 

fluid particle. 

𝒑ሶ = 𝑚𝒗ሶ =෍𝑭𝒊

𝑛

𝑖=1

 

3. The rate of change of energy is equal to the sum of the rate of heat 

addition to the rate of work done on a fluid particle.  

To derive the governing PDE for each conservation law, consider a small 

element of fluid with sides 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧.  

• Volume  𝑉 = 𝛿𝑥𝛿𝑦𝛿𝑧 

• Mass 𝑚 = 𝜌𝑉 = 𝜌𝛿𝑥𝛿𝑦𝛿𝑧 

Full Set of Governing Equations 

• Conservation of mass 
𝜕𝜌

𝜕𝑡
+ ∇ ⋅ ሺ𝜌𝒖ሻ = 0 

• Conservation of momentum (Navier – Stokes) 

▪
𝜕𝜌𝑢

𝜕𝑡
+ ∇ ⋅ ሺ𝜌𝒖𝑢ሻ = ∇ ⋅ ሺ𝜇∇𝑢ሻ −

𝜕𝑝

𝜕𝑥
+ 𝑆𝑀𝑥 

▪
𝜕𝜌𝑣

𝜕𝑡
+ ∇ ⋅ ሺ𝜌𝒖𝑣ሻ = ∇ ⋅ ሺ𝜇∇𝑣ሻ −

𝜕𝑝

𝜕𝑥
+ 𝑆𝑀𝑦 

▪
𝜕𝜌𝑤

𝜕𝑡
+ ∇ ⋅ ሺ𝜌𝒖𝑤ሻ = ∇ ⋅ ሺ𝜇∇𝑤ሻ −

𝜕𝑝

𝜕𝑧
+ 𝑆𝑀𝑧 

• Conservation of energy 
𝜕𝜌𝑖

𝜕𝑡
+ ∇ ⋅ ሺ𝜌𝒖𝑖ሻ = ∇ ⋅ ሺ𝑘∇𝑇ሻ − 𝑝∇𝒖 + 𝑆𝐷𝑖𝑠 

• Equations of state  

▪ 𝑝 = 𝑝ሺ𝜌, 𝑇ሻ 

▪ 𝑖 = 𝑖ሺ𝜌, 𝑇ሻ 

General Structure of Governing Equations 

• Accumulation Temporal rate of change of a given quantity within 𝑉 

• Convection Transport of the quantity due to any existing velocity field 

• Diffusion Transport of the quantity due to the presence of and  

  gradients of that quantity. 

𝜕𝜌𝜙

𝜕𝑡ถ
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

+ 𝛻 ⋅ ሺ𝜌𝒖𝜙ሻᇣᇧᇧᇤᇧᇧᇥ
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= 𝛻 ⋅ ሺ𝛤𝛻𝜙ሻᇣᇧᇧᇤᇧᇧᇥ
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ 𝑆𝜙ด
𝑆𝑜𝑢𝑟𝑐𝑒
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OpenFoam  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Commands 

Change to RUN directory 

 cd $FOAM_RUN 

Copy tutorial 

 cp -r $FOAM_TUTORIALS/name . 

Change to newly created directory 

 cd name 

Create mesh of case (= name) 

 case/blockMesh 

Check mesh case (= name) 

 case/checkMesh 

View mesh 

 paraFoam 

Run commands in Allrun 

 ./Allrun 

 
 XLaunch 

Multiple Cores 

Create decomposePar file 

 cp -r $FOAM_UTILITIES/parallelProcessing/decomposePar . 

Create decomposeParDict (copy from pitzDaily/system or damBreak/system) 

 ... 

Run DecomposePar 

 decomposePar 

Run the case in parallel using the solver XXX  

 mpirun -np 4 XXX -parallel | tee log 

reconstruct the result from the single processors 

 reconstructPar 

Have a look at the result with paraFoam 

 paraFoam & 

 


