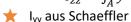
Biegung


Flächenmoment 2. Grades lyy, Izz

•
$$I_{yy} = \int_A z^2 dA$$

• $I_{yy} = \int_A z^2 dA$ 2.Flächenmoment um y-Achse

•
$$I_{zz} = \int_A^A y^2 dA$$
 2.Flächenmoment um z-Achse

Beispiele

Rechteck

$$I_{yy} = \int_{-h_{/2}}^{h_{/2}} \int_{-b_{/2}}^{b_{/2}} z^{2} \cdot dy \, dz = \int_{-h_{/2}}^{h_{/2}} y \, z^{2} \Big|_{-\frac{b}{2}}^{\frac{b}{2}} dz = \int_{-\frac{h}{2}}^{\frac{h}{2}} b z^{2} \cdot dz = b \frac{z^{3}}{3} \Big|_{-\frac{h}{2}}^{\frac{h}{2}} = \frac{b \cdot h^{3}}{12}$$
• Rechteckhohlprofil
$$I_{yy} = I_{yy1} - I_{yy2}$$

Satz von Steiner

Eine Teilfläche \bar{A} , die gegenüber dem Gesamtschwerpunkt um \bar{z}_s in z-richtung verschoben ist, trägt zum Flächenmoment des Gesamtquerschnitts mit dem Wert $I_{\overline{VV}}$ bei:

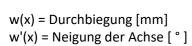
$$I_{\overline{y}\overline{y}} = I_{yy} + \bar{A} \cdot \bar{z}_s^2$$

$$\Rightarrow I_{yy} = \sum (I_{\overline{y}\overline{y}_i} + \bar{A}_i \cdot \bar{z}_{s_i}^2), \qquad bzw. \ I_z = \sum (I_{\overline{z}\overline{z}_i} + A_i \cdot y_{s_i}^2)$$

• Also alle Flächenmomente zu ihren Flächen mal abstand zum Gesamtschwerpunkt rechnen und diese dann aufsummieren.

Biegespannung (σ_x) und Widerstandsmoment (W)

$$\begin{split} \sigma_x &= \frac{M}{I_{yy}} \cdot z \\ \Rightarrow \sigma_{x \max} &= \frac{M}{I_{yy}} \cdot z_{\max} = \frac{M}{W_{yy}}, \quad mit \ W = \frac{I}{z_{\max}} \ [mm^3] \end{split}$$


* W aus Schaeffler

Biegelinie

DGL der Biegelinie:

$$M = \int_A E \cdot \psi' \cdot z^2 \, dA = E \cdot \psi' \int_A z^2 \, dA \Rightarrow M = EI(-w''(x))$$

El ist die Biegesteifigkeit (wie EA=Dehnsteifigkeit) * w aus Schaeffler

Auch möglich in 2-Dimensional:

$$-\mathbf{M} = E \cdot \underline{\mathbf{I}} \cdot \mathbf{w}''(x) \Rightarrow \begin{bmatrix} M_{y}(x) \\ -M_{z}(x) \end{bmatrix} = E \cdot \begin{bmatrix} I_{yy} & I_{yz} \\ I_{zy} & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} w_{z}''(x) \\ w_{y}''(x) \end{bmatrix}$$

Ist der Querschnitt symmetrisch, dann ist $I_{zv} = I_{vz} = 0$

$$M_y(x) = E \cdot I_{yy} \cdot w_z^{"}(x) + 0$$

$$-M_z(x) = 0 + E \cdot I_{zz} \cdot w_y^{"}(x)$$

Deviationsmoment

Bei nicht symmetrischen Körper, (Biegung nicht entlang einer Symmetrieachse)

$$I_{yz} = I_{zy} = -\int_A yz \cdot dA$$

- · Wenn Querschnitt in mindestens einer Achsrichtung symmetrisch ist: $I_{zv} = 0$
- · Satz von Steiner $I_{\overline{v}\overline{z}} = I_{vz} - \overline{A} \cdot \overline{y}_{s} \cdot \overline{z}_{s}$
- Gesamtquerschnitt

$$I_{yz} = \sum I_{yz,i} - A_i \cdot y_{is} \cdot z_{is}$$

Hauptachsentransformation

Jeder Querschnitt hat Hauptachsen (Hauptträgheitsachsen). Für diese Hauptachsen gilt:

- Stehen senkrecht aufeinander
- · Gehen durch den Schwerpunkt
- Im Hauptachsensystem ist das Deviationsmoment I_{yz} = 0
- Das Hauptachsensystem ist dem y-z-System um Winkel φ gedreht

$$\tan(2\varphi) = \frac{2I_{yz}}{I_{yy} - I_{zz}}$$
Falls $I_{yy} = I_{zz}$, $\varphi = 45^{\circ}$

• Für symmetrische Querschnitte entsprechen die Hauptachsen den Symmetrieachsen.

Die Flächenmomente bezüglich der Hauptachsen heissen Hauptträgheitsmomente $I_{1,2} = I_{max.min}$

$$I_{1} = \frac{1}{2} \left(I_{yy} + I_{zz} \right) + \frac{1}{2} \left(I_{yy} - I_{zz} \right) \cdot \cos(2\varphi) + I_{yz} \cdot \sin(2\varphi)$$

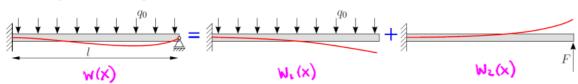
$$I_{2} = \frac{1}{2} \left(I_{yy} + I_{zz} \right) - \frac{1}{2} \left(I_{yy} - I_{zz} \right) \cdot \cos(2\varphi) - I_{yz} \cdot \sin(2\varphi)$$

$$I_{12} = -\frac{1}{2} \left(I_{yy} - I_{zz} \right) \cdot \sin(2\varphi) + I_{yz} \cdot \cos(2\varphi)$$

$$I_1 + I_2 = I_{yy} + I_{zz} = I_P$$

Zusammenfassung Seite 1

Schäffler	PDF	Gebunden
Flächenträgheitsmoment 2.Grad	230	242
Widerstansmoment	230	242
Biegelinien	243	254
Torsionsspannung	236	
Polares Flächenmoment	236	


Biegung II

Biegelinie II

Superposition

Die Lastfälle können einzeln berechnet werden und danach addiert werden zur Gesamtbiegelinie.

• Bsp:

 $w_1(x) \& w_2(x)$ aus Schaeffler

Randbedingung: $w(l) = 0 \Rightarrow w_1(l) = -w_2(l)$

!ACHTUNG!: Richtung der Kräfte beachten (hier eigentlich w₁ - w₂)

Biegung und Normalkraft

Die Spannung in Bauteilen, die gleichzeitig durch Normalkraft und Biegung berechnet sich mit Superpositionsprinzip zu:

$$\sigma_x(y,z) = \sigma_x = \frac{N}{A} + \frac{M_y}{I_{yy}} \cdot z - \frac{M_z}{I_{zz}} \cdot y$$

Bei Kreisring

$$\sigma_x = \frac{N}{A} - \frac{\sqrt{M_y^2 + M_z^2}}{I} \cdot \frac{D}{2}$$

Und die maximale Spannung:

$$\max \sigma_x = \frac{|N|}{A} + \frac{\left|M_y\right|}{W_{yy}} + \frac{\left|M_z\right|}{W_{zz}}$$

Tabellen

1.1 Einzelstab, Vereinbarung: \triangle^{-l} Lager überträgt nur Vertikalkraft 1.1.1 Träger auf zwei Stützen¹⁾, $\alpha = \alpha/l$, $\beta = b/l$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.1.1 Träger auf zwei Stützen ¹⁾ , $\alpha = a/l$, $\beta = b/l$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mitte						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ 8 \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{vmatrix} \frac{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{4+8+8+4}}}}}{48+8+4+4} \\ a = l/n \end{vmatrix} = \frac{2}{2} P \begin{vmatrix} \frac{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{4+8+4}}}}}}}{2} \\ n \text{ ungerade: } \frac{n}{8}Pl\left(1-\frac{1}{n^2}\right) \\ \frac{5nPl^3}{384El}\left(1-\frac{0.8}{n^2}\right) \end{vmatrix} $							
$a = l/n$ $n \text{ ungerade: } \left \frac{3}{8} Pl \left(1 - \frac{1}{n^2} \right) \right \frac{361}{384} \frac{l}{8} \left(1 - \frac{3}{n^2} \right)$							
n Lasten P $n_{Dl} = 5nPl^3 (1.0)$							
$n \text{ ungerade: } \frac{n}{2} Pl \left(1 + \frac{1}{2}\right) \frac{3nT}{204 Fl} \left(1 + \frac{3nT}{2}\right)$	$\frac{0,2}{n^4}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· 12						
$\alpha \ge \frac{1}{2}$: $-\alpha M^e$ bei $\xi_0 = \alpha$ $\alpha \ge \frac{1}{2}$: $\frac{3\beta}{16EI}M^e$	l^2						
$\prod_{l} \left(\frac{M_l - M_k}{l} \right) \left \frac{M_k - M_i}{l} \right - \frac{M_k - M_i}{l} \qquad M_i \text{ oder } M_k \qquad \qquad \frac{M_i + M_k}{16EI} t^2$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
13 w_i w_k 0 0 0 $\frac{w_i + w_k}{2}$							

	gsglieder	M-Linie	71, $\beta = b/l$, $\xi = x/l$, $\overline{\xi} = \overline{x}/l$ Biegelinie	
		M(x)	$\varphi_i \mathcal{T} w(x) \in \varphi_k$	
$L = \varphi_i 6 \frac{Li}{i}$	$R = \varphi_k 6 \frac{EI}{I}$	M(x)	$\varphi_i = W(x) \cdot \varphi_k$	
L .	R	M(x)	x x w(x)	
$\frac{ql^2}{4}$	$\frac{ql^2}{4}$	$\frac{\xi \overline{\xi}}{2} q l^2$	$\frac{1+\xi\bar{\xi}}{24El}\xi\bar{\xi}ql^4$	
$\frac{7ql^2}{60}$	$\frac{ql^2}{7.5}$	$\frac{\xi - \xi^3}{6} q l^2$	$\frac{(\xi - \xi^3)(7 - 3\xi^2)}{360EI}ql^4$	
$\frac{ql^2}{7.5}$	$\frac{7ql^2}{60}$	$\frac{\overline{\xi} - \overline{\xi}^3}{c} q l^2$	$\frac{(\bar{\xi} - \bar{\xi}^3)(7 - 3\bar{\xi}^2)}{360EI}ql^4$	
1,0	00	б		+
		75 735 77 835	$\left[(\overline{\xi} - \overline{\xi}^3)(7 - 3\overline{\xi}^2) q_i \right]$	
$\frac{q_i + 7q_k}{60}l^2$	$\frac{7q_i + 8q_k}{60}l^2$	$\frac{(\overline{\xi}-\overline{\xi}^3)q_{\mathbf{i}}+(\xi-\xi^3)q_{\mathbf{k}}}{6}l^2$	$+(\xi-\xi^3)(7-3\xi^2)q_k$ $\frac{l^4}{360EI}$	
$\frac{ql^2}{5}$	$\frac{ql^2}{5}$	$\frac{1+\xi\bar{\xi}}{3}\xi\bar{\xi}ql^2$	$\frac{(1+\xi\bar{\xi})^3 - 1}{90EI}ql^4$	
0,375 <i>Pl</i>	0,375 <i>Pl</i>	$\xi \le 0.5$: $\xi Pl/2$ $\xi \ge 0.5$: $\xi Pl/2$	$\xi \le 0.5: (0.75 - \xi^2) \xi P l^3 / (12EI)$ $\xi \ge 0.5: (0.75 - \xi^2) \xi P l^3 / (12EI)$	
1+β)αβPl	$(1+\alpha)\alpha\beta Pl$	<i>ξ</i> ≤ α: <i>ξβPl</i>	$\xi \le \alpha$: $(1-\beta^2-\xi^2)\beta \xi P l^3/(6EI)$	1
		$\xi \geq \alpha$: $\xi \alpha Pl$	$\xi \ge \alpha$: $(1-\alpha^2 - \overline{\xi}^2)\alpha \overline{\xi} P l^3/(6EI)$	+
$Pl\left(1-\frac{1}{n^2}\right)$	$\frac{n}{4} Pl \left(1 - \frac{1}{n^2} \right)$			
$Pl\left(1+\frac{0.5}{n^2}\right)$	$\frac{n}{4} Pl \left(1 + \frac{0.5}{n^2}\right)$			
02 1) Me	$(1-3\alpha^2)M^e$	$\xi \leq \alpha$: $-\xi M^e$	$\xi \leq \alpha : -\frac{1 - 3\beta^2 - \xi^2}{6EI} \xi M^{\mathrm{e}} l^2$	
- 1 JM	(1-30)111	$\xi \ge \alpha$: $\overline{\xi} M^e$	$\xi \ge \alpha$: $\frac{1-3\alpha^2-\overline{\xi}^2}{6EI}\overline{\xi}M^el^2$	
			$\frac{(\bar{\xi}-\bar{\xi}^3)M_{\rm i}+(\xi-\xi^3)M_{\rm k}}{l^2}$	+

1.1.2 Einseitig eingespannter Träger ¹⁾ , $\alpha = a/l$, $\beta = b/l$							
$EI = konst.$ $i \swarrow k$ $+ l \longrightarrow k$	$A \longrightarrow B$						
	Α	В	M_k				
ŢŢŢŢq	$\frac{3ql}{8}$	$\frac{5ql}{8}$	$-\frac{ql^2}{8}$				
a q	$\frac{ql}{10}$	$\frac{2ql}{5}$	$-\frac{ql^2}{15}$				
q	$\frac{11ql}{40}$	$\frac{9ql}{40}$	$-\frac{7 q l^2}{120}$				
$q_i \longrightarrow q_k$	$\frac{11q_{\mathrm{i}}+4q_{\mathrm{k}}}{40}l$	$\frac{9q_i + 16q_k}{40}l$	$-\frac{7q_{i}+8q_{k}}{120}l^{2}$				
quadr. Parabel	$\frac{7ql}{30}$	$\frac{13ql}{30}$	$-\frac{ql^2}{10}$				
+ 1/2+ 1/2+	$\frac{5P}{16}$	$\frac{11P}{16}$	$-\frac{3Pl}{16}$				
<u></u>	$\frac{3-\beta}{2}\beta^2P$	$\frac{3-\alpha^2}{2}\alpha P$	$-\frac{1-\alpha^2}{2}\alpha Pl$				
$n-1$ Lasten P $ \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad $	$\left(3n-4+\frac{1}{n}\right)\frac{P}{8}$	$\left(5n-4-\frac{1}{n}\right)\frac{P}{8}$	$-\bigg(1-\frac{1}{n^2}\bigg)\frac{n}{8}Pl$				
n Lasten P	$\left(3n - \frac{0.5}{n}\right)\frac{P}{8}$	$\left(5n + \frac{0.5}{n}\right)\frac{P}{8}$	$-\left(1+\frac{0.5}{n^2}\right)\frac{n}{8}Pl$				
	$-\left(1-\alpha^2\right)$ 1,5 $\frac{M^e}{l}$	$\left(1-\alpha^2\right)$ 1,5 $\frac{M^{\rm e}}{l}$	$rac{3lpha^2-1}{2}M^{ m e}$				
	$-1.5\frac{M_{ m i}}{l}$	1,5 $\frac{M_{ m i}}{l}$	$-\frac{1}{2}M_{\mathrm{i}}$				
Temp. T_0 T_u $\kappa^e = \alpha_T (T_u - T_0)/h$	$-1,5\kappa^{e}\frac{EI}{l}$	$1.5 \kappa^{e} \frac{EI}{l}$	-1,5 κ ^e EI				
W _i W _k	$(w_k - w_i) 3 \frac{EI}{l^3}$		$(w_k - w_i) 3 \frac{EI}{l^2}$				
Sφk	$3\frac{EI}{l^2}\varphi_k$	$-3\frac{EI}{l^2}\varphi_{\mathbf{k}}$	$3\frac{EI}{l}\varphi_{\mathbf{k}}$				
	$El = konst, k$ $\downarrow l$ $\downarrow q$ $q_{i} \downarrow q$	$ \begin{array}{c c} El = konst, \\ & & A \\ \hline & & & A \\ \hline & & & & & A \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Einseitig eingespannter Träger (Fortsetzung), $\alpha = \alpha/l$, $\beta = b/l$

0

 $\frac{\xi \bar{\xi}}{2} l^2 \kappa^e$

 $\bar{\xi}w_{\rm i} + \xi w_{\rm k}$

 $\frac{w_{\mathbf{k}}-w_{\mathbf{i}}}{l^2}6EI - \frac{w_{\mathbf{k}}-w_{\mathbf{i}}}{l^2}6EI$

 $3\kappa^e EI$

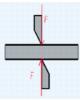
 $3\kappa^e EI$

Einseitig eingespannter I	Präger (Fortsetzung), $\alpha = a/l$,	$\beta = b/l$	
$\max M \xrightarrow{\text{M-Linie}} x_0 = \xi_0 l$	Biegelinie W _{Mitte} +l/2+l/2→	Biegelinie maxw $\mapsto x_0 = \xi_0 l$	
$\longrightarrow x_0 = \zeta_0 \iota$ $\max M$	W _{Mitte}	maxw	
$\frac{9ql^2}{128}$ bei $\xi_0 = 0,375$	$\frac{ql^4}{192 EI}$	$\frac{ql^4}{184,6EI}$ bei $\xi_0 = 0,422$	1
$\frac{ql^2}{33,54} \text{ bei } \xi_0 = 0,447$	$\frac{3ql^4}{1280EI}$	$\frac{ql^4}{419,3EI}$ bei $\xi_0 = 0,447$	2
$\frac{ql^2}{23,65}$ bei $\xi_0 = 0,329$	$\frac{11ql^4}{3840EI}$	$\frac{ql^4}{328,1EI} \text{ bei } \xi_0 = 0,402$	3
$\begin{bmatrix} 1{,}5q_{1}+(q_{k}-q_{i})\xi_{0}\big]\xi_{0}^{2}l^{2}/3 \text{ be} \\ \xi_{0} = \frac{0{,}55q_{i}+0{,}2q_{k}}{\sqrt{9q_{i}^{2}+7q_{i}q_{k}+4q_{k}^{2}}+q_{i}} \\ 20 \end{bmatrix}$	$\frac{11q_{\rm i} + 9q_{\rm k}}{3840EI}l^4$		4
$\frac{ql^2}{16,89} \text{ bei } \xi_0 = 0,399$	$\frac{5ql^4}{1152EI}$	$\frac{ql^4}{222,5EI}$ bei $\xi_0 = 0,427$	5
$\frac{Pl}{6,4}$ bei $\xi_0 = 0.5$	$\frac{7Pl^3}{768EI}$	$\frac{Pl^3}{107,3EI}$ bei $\xi_0 = 0,447$	6
$\frac{3-\beta}{2}\alpha\beta^2 Pl \text{ bei } \xi_0 = \alpha$	$\alpha \le 0.5$: $(3-5\alpha^2)\alpha Pl^3/(96EI)$ $\alpha \ge 0.5$: $(9-11\beta)\beta^2 Pl^3/(96EI)$		7
$\max M < \frac{nPl}{128} \left(3 + \frac{1}{n^2} \right)^2$ $\max M > \frac{nPl}{128} \left(9 - \frac{10}{n^2} + \frac{1}{n^4} \right)$	$ \begin{aligned} & n \text{ gerade: } \frac{n P l^3}{384 E I} \bigg(2 - \frac{1}{n^2} \bigg) \\ & n \text{ unger.: } \frac{n P l^3}{384 E I} \bigg(2 - \frac{1}{n^2} - \frac{1}{n^4} \bigg) \end{aligned} $		8
$\max M < \frac{nPl}{128} \left(9 + \frac{13}{n^2} + \frac{0,25}{n^4} \right)$	$n \text{ gerade: } \frac{nPl^3}{384EI} \left(2 + \frac{0.5}{n^2}\right)$		9
$\max M > \frac{nPl}{128} \left(3 - \frac{0.5}{n^2} \right)^2$ $-\left(1 - \alpha^2 \right) \alpha 1.5 M^e \text{ li. von } M^e$	n unger.: $\frac{nPl^3}{384EI} \left(2 + \frac{0.5}{n^2} + \frac{1}{n^4} \right)$		
$\left[1-\left(1-\alpha^2\right)\alpha 1,5\right]M^{\rm e}$ re. von $M^{\rm e}$ bei $\xi_0=\alpha$	$\alpha \le 0.5: \frac{1 - 5\alpha^2}{32 EI} M^{e} l^2$ $\alpha \ge 0.5: \frac{11\beta - 6}{32 EI} \beta M^{e} l^2$		10
M_{i}	$\frac{M_{\rm i}l^2}{32EI}$	27 EI 30 3	1.1
$M_{ m k}$	$\frac{\kappa^{e} l^2}{32}$	$\frac{\kappa^{\rm e} l^2}{27} \text{ bei } \xi_0 = \frac{1}{3}$	12
$M_{ m k}$	$\frac{5w_{i} + 11w_{k}}{16}$		13
$M_{ m k}$	$\frac{3}{16}\varphi_{\mathbf{k}}l$	0,19245 $\varphi_k l$ bei $\xi_0 = 0,577$	14

1.1	1.1.3 Beidseitig eingespannter Träger ¹⁾ , $\alpha = a/l$, $\beta = b/l$						
	EI = konst.	M _i ()					
	+l+	A	†A B	^B M; ∣	Mk		
H				,			
1	$ \downarrow \downarrow \downarrow \downarrow \downarrow q $	$\frac{ql}{2}$	$\frac{ql}{2}$	$-\frac{ql^{2}}{12}$	$-\frac{ql^{2}}{12}$		
2	q q	$0,\!15ql$	$0,\!35ql$	$-\frac{ql^2}{30}$	$-\frac{ql^2}{20}$		
3	q	0,35 ql	$0,\!15ql$	$-\frac{ql^2}{20}$	$-\frac{ql^2}{30}$		
4	$q_i + \cdots + q_k$	$(0,35q_{\rm i}+0,15q_{\rm k})l$	$(0,15q_i+0,35q_k)l$	$-\frac{1.5q_{\rm i}+q_{\rm k}}{30}l^2$	$-\frac{q_i + 1,5q_k}{30}l^2$		
5	quadr. Parabel	$\frac{ql}{3}$	$\frac{ql}{3}$	$-\frac{ql^2}{15}$	$-\frac{ql^2}{15}$		
6	P + 1/2+ 1/2+	$\frac{P}{2}$	$\frac{P}{2}$	$-\frac{Pl}{8}$	- <u>Pl</u> 8		
7	P +a → b →	$(3-2\beta)\beta^2P$	$(3-2\alpha)\alpha^2P$	$-\alpha\beta^2 Pl$	$-\alpha^2\beta Pl$		
8	n-1 Lasten P + a+a+a+a+ a = l/n	$\frac{n-1}{2}P$	$\frac{n-1}{2}P$	$-\bigg(1-\frac{1}{n^2}\bigg)\frac{n}{12}Pl$	$-\left(1-\frac{1}{n^2}\right)\frac{n}{12}Pl$		
9	n Lasten P $ \downarrow \downarrow \downarrow \downarrow \downarrow $ $ \uparrow \downarrow a/2 $ $ \downarrow a/2 $	$\frac{n}{2}P$	$\frac{n}{2}P$	$-\left(1+\frac{0.5}{n^2}\right)\frac{n}{12}Pl$	$-\left(1+\frac{0.5}{n^2}\right)\frac{n}{12}Pl$		
10	$\xrightarrow{+a+b}$	$-6\alpha\beta\frac{M^{e}}{l}$	$6\alpha\beta\frac{M^{\rm e}}{l}$	$-(3\beta-2)\beta M^{e}$	$(3\alpha-2)\alpha M^e$		
11	Temp. $T_o T_u + h$ $\kappa^e = \alpha_T (T_u - T_o)/h$	0	0	-ĸ° EI	−κ° EI		
12	$w_i = w_k$	$(w_k - w_i)12\frac{EI}{l^3}$	$-(w_k - w_i) 12 \frac{EI}{l^3}$	$-(w_k-w_i)6\frac{EI}{l^2}$	$(w_k - w_i)6\frac{EI}{l^2}$		
13	917	$-6\frac{EI}{l^2}\varphi_i$	$6\frac{EI}{l^2}\varphi_i$	$4\frac{EI}{l}\varphi_{i}$	$-2\frac{EI}{l}\varphi_{i}$		
14	$ \varphi_k$	$6\frac{EI}{l^2}\varphi_k$	$-6\frac{EI}{l^2}\varphi_k$	$-2\frac{EI}{l}\varphi_k$	$4\frac{EI}{l}\varphi_{\mathbf{k}}$		

	8.4.4.5	Träger (Fortsetzung), α =	Biegelinie	
		Siegenine	Diogenine	
max/	$x_0 = \xi_0 l$	+1/2+1/2→	$\max_{l \to x_0 = \xi_0 l}$	
	$\max M$			
- +2		W _{Mitte}	maxw	_
$\frac{ql}{24}$	bei $\xi_0 = 0.5$	ql^4	$\frac{ql^4}{384 EI}$ bei ξ_0 =0,5	
		384 EI		4
- qı	bei $\xi_0 = 0,548$	ql^4	$\frac{ql^4}{764,2EI}$ bei ξ_0 =0,525	1
40,04		768 EI	4	_
40.04	bei $\xi_0 = 0,452$	ql^4	$\frac{ql^4}{764,2 EI}$ bei $\xi_0 = 0,475$	1
		768 EI	764,2 EI	4
	$\frac{q_{\rm i}}{\xi_0} \xi_0^2 l^2 + M_{\rm i} \text{ be}$			
F	$(0.7q_i + 0.3q_k)$ $(q_i^2 + q_k^2) + 0.4q_iq_k + q_i$	$\frac{q_i + q_k}{768 EI} l^4$		ı
. 0.3(0	$(r^2 + a_1^2) + 0.4a_1a_1 + a_2$	768 EI		ı
V - 1-(4	1 - 4k / - 0,1414k - 4			1
391	bei $\xi_0 = 0.5$	$13ql^{4}$	$\frac{13ql^4}{5760EI}$ bei $\xi_0=0.5$	
		5760 EI	5760 EI	1
$\frac{Pl}{8}$ bei $\xi_0 = 0.5$		_Pl ³	$\frac{Pl^3}{192EI} \text{ bei } \xi_0=0,5$	
		192 EI	192 EI 50-0,5	ľ
$2\alpha^2\beta$	^{2}Pl bei $\xi_{0} = \alpha$	$\alpha \leq \frac{1}{2}$: $(3-4\alpha)\alpha^2 Pl^3/(48EI)$		1
	PH ()	$\alpha \ge \frac{1}{2}$: $(3 - 4\beta)\beta^2 Pl^3/(48EI)$		l
n gerade:	$\frac{nPl}{24}\left(1+\frac{2}{n^2}\right)$	nPl^3	$\frac{nPl^3}{384 EI} \text{ bei } \xi_0 = 0.5$	ı
		384 EI		8
n unger.:	$\frac{nPl}{24}\left(1-\frac{1}{n^2}\right)$	$\frac{nPl^3}{384 EI} \left(1 - \frac{1}{n^4}\right)$	$\frac{nPl^3}{384 EI} \left(1 - \frac{1}{n^4}\right) \text{ bei } \xi_0 = 0,5$	ľ
-	/6 /			L
n gerade:	$\frac{nPl}{24}\left(1-\frac{1}{n^2}\right)$	nPl^3	$\frac{nPl^3}{384EI}$ bei ξ_0 =0,5	Γ
		384 EI		l.
unger.:	$\frac{nPl}{24}\left(1+\frac{2}{n^2}\right)$	$\frac{nPl^3}{384 EI} \left(1 + \frac{1}{n^4}\right)$	$\frac{nPl^3}{384 EI} \left(1 + \frac{1}{n^4}\right) \text{bei } \xi_0 = 0.5$	ľ
	20 10 7	$384 EI$ $(1+\frac{1}{n^4})$	$384 EI$ $(1+\frac{1}{n^4})^{be1} \zeta_0 = 0,5$	
$(1-3\alpha+6a)$	$\alpha^2 \beta M^e$ li. von M^e	α < 0.5, 1-2α - 3 σ ε 12		T
1-38+66	αM^{e} re. von M^{e}	$\alpha \le 0.5$: $\frac{1-2\alpha}{8EI} \alpha M^e l^2$		
		$\alpha \ge 0.5$: $\frac{2\beta - 1}{9FI}\beta M^e l^2$		
b	ei ξ ₀ = α	8EI		L
-x e E	I(M = konst.)	0	0	11
asa (sra = nunot.)		Ü	0	1
M_i oder M_k		$w_i + w_k$	w, oder w _k	12
		2	w ₁ ouer w _k	
M:		$\frac{1}{8}\varphi_i l$	$\frac{4}{27}\varphi_i l \text{ bei } \xi_0 = \frac{1}{3}$	12
		$\frac{1}{2}\varphi_k l$	$\frac{27}{27} \varphi_k l \text{ bei } \xi_0 = \frac{2}{3}$	13

1.	1.1.4 Träger auf zwei Stützen mit Kragarm							
	EI = konst.	M-Linie	ma	MXE	M_k	W _{Mitte}		
	<u>i k j</u>	Auflagerk	räfte 🗚	7	В	Biegelinie △ + V	2+1/2+	
	l	Α	В	maxM	M_k	W _{Mitte}	w_j	
1	q T	$(l^2-c^2)\frac{q}{2l}$	$(l+c)^2 \frac{q}{2l}$	$\frac{A^2}{2q}$	$-\frac{qc^2}{2}$	$\left(\frac{l^2}{2,4} - c^2\right) \frac{ql^2}{32EI}$	$\left(\frac{c^3}{8} + \frac{c^2l}{6} - \frac{l^3}{24}\right) \frac{qc}{EI}$	
2	q + + + + +	$\frac{ql}{2}$	$\frac{ql}{2}$	$\frac{ql^2}{8}$	0	$\frac{ql^4}{76,8EI}$	$-rac{ql^3c}{24EI}$	
3	<u>q</u>	$-\frac{qc^2}{2l}$	$\left(1+\frac{c}{2l}\right)qc$	$M_{ m k}$	$-\frac{qc^2}{2}$	$-\frac{ql^2c^2}{32EI}$	$\left(\frac{l}{6} + \frac{c}{8}\right) \frac{qc^3}{EI}$	
4	P ∆	$\frac{Pb}{l}$	$\frac{Pa}{l}$	$\frac{Pab}{l}$	0	$ \frac{\binom{l^2}{16} - \frac{a^2}{12} \frac{Pa}{EI}}{\text{wenn } a \le l/2} $	$-(l+a)\frac{Pabc}{6lEI}$	
5	△	$-\frac{Pa}{l}$	$\left(1+\frac{a}{l}\right)P$	$M_{ m k}$	-Pa	$-\frac{Pal^2}{16EI}$	$\left(\frac{lc}{3} + \frac{ac}{2} - \frac{a^2}{6}\right) \frac{Pa}{EI}$	
6	<u>M</u> ⁰ ⟩	$-\frac{M^{\mathrm{e}}}{l}$	$\frac{M^{\rm e}}{l}$	-M ^e	-M ^e	$-\frac{M^{\rm e}l^2}{16EI}$	$\left(\frac{l}{3} + \frac{c}{2}\right) \frac{cM^e}{EI}$	
7	Temp. T_o T_u $K^e = \alpha_T (T_u - T_o)/h$							
L		0	0	0	0	$\kappa^e l^2/8$	-κ ^e lc/2	
8	√ _K ·θ⊳	0	0	0	0	0	$-\kappa^e c^2/2$	


1.1.5 Kragträger

1.	1.5 Kragtrager					
EI = konst.		M-Linie M _i		Biegelinie ⊢ w _k		
	<i>l</i>	Α	M_i	w_k	φ_k	
1	q	ql	$-\frac{ql^2}{2}$	$rac{ql^4}{8EI}$	$\frac{ql^3}{6EI}$	
2	q	$\frac{ql}{2}$	$-\frac{ql^2}{6}$	$\frac{ql^4}{30EI}$	$\frac{ql^3}{24EI}$	
3	q q	$\frac{ql}{2}$	$-\frac{ql^2}{3}$	$\frac{11ql^4}{120EI}$	$\frac{ql^3}{8EI}$	
4	P	P	-Pl	$\frac{Pl^3}{3EI}$	$rac{Pl^2}{2EI}$	
5	P +-a→	P	-Pa	$\left(\frac{l}{2} - \frac{a}{6}\right) \frac{Pa^2}{EI}$	$\frac{Pa^2}{2EI}$	
6	$\frac{M_k}{N_k}$	0	$M_{ m k}$	$-\frac{M_{\mathrm{k}}l^{2}}{2EI}$	$-rac{M_{ m k} l}{EI}$	
7	Temp. T_0 T_u $\kappa^{\theta} = \alpha_T (T_u - T_0)/h$	0	0	$-\frac{\kappa^{e}l^{2}}{2}$	-κ ^e l	

Querkraft: Scherung & Schub

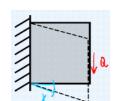
Scherung

Wenn die angreifende Kraft und Gegenkraft (nahezu) auf einer Wirkungslinie liegen, ist die Wirkung der Biegung vernachlässigbar und es entstehen nur **Scherspannungen**:

$$\tau = \frac{F}{A} \,, \qquad [N/m \, m^2]$$

Die maximale Scherspannung von zähen Werkstoffen (z.B. Stahl) aus von Mises Vergleichsspannung.

$$\tau_{max} = \frac{\text{Re}}{\sqrt{3}}$$


Beispiele:

Bolzen, Stifte, Stanzen

Schub

Bei Schubbelastung verschieben sich die Querschnitte zueinander und es entsteht ein (kleiner) Gleitwinkel γ

γ ist proportional zu Q.

Analog zu Hooke'schen Gesetz

$$\tau = G \cdot \gamma$$

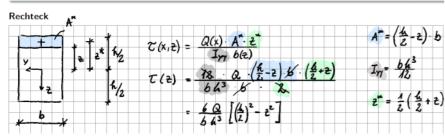
$$G = \frac{E}{2(1+\nu)}$$

G = Schubmodul

E = E-Modul

 ν = Poissonzahl

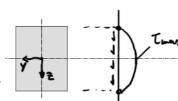
Zusammenfassung: $\sigma = E \cdot \varepsilon$ $\tau = G \cdot \gamma$


Schubspannung infolge Querkraft beim Biegeträger

Schubspannung infolge Querkraft beim Biegeträger

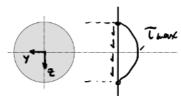
In Biegeträgern wirken Schubspannungen, die folgendermassen berechnet werden

$$\tau(x,z) = \frac{Q(x)A^*z^*}{I_{yy}b(z)}$$


Der Schubspannungsverlauf über die Höhe ist im Allgemeinen nicht konstant. Für die wichtigen Spezialfälle sind Maximalwerte gegeben.

Schubspannungsverlauf

Rechteck


$$\tau_{\text{max}} = \frac{6Q}{bh^3} \cdot \frac{h^2}{4} = \frac{3}{2} \cdot \frac{Q}{b \cdot h} = \frac{3}{2} \cdot \frac{Q}{A}$$

Kreis

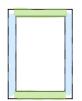
Analog Rechteck

$$\tau_{\text{max}} = \frac{4}{3} \cdot \frac{Q}{A}$$


Hohlprofile

Bei Hohlprofilen übernehmen die Stege die Querkraft:

$$\tau = \frac{Q}{A_{steg}}$$

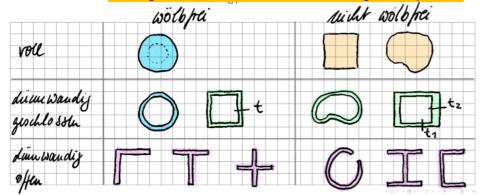

Torsion

$$\tau = \frac{M_x}{W_T}$$

Flansch / Steg

Steg

Flansch

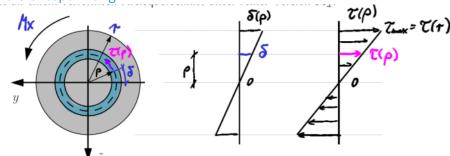


Torsion

Torsion ist die Momentenbeanspruchung eines schlanken Bauteils um seine Längsachse. Sie verursacht eine Torsionsbelastung (Torsionsspannung) und Verdrillung des Querschnittes (Verformung).

In der Mechanik wird zwischen folgenden Torsionsarten unterschieden:

- Torsion am Kreis und Kreisring
- Torsion an dünnwandigen geschlossenen Hohlprofilen
- Torsion an dünnwandigen offenen Hohlprofilen
- Torsion an beliebigen offen Profilen und an dickwandigen Hohlprofilen



Polares Flächenmoment

$$I_P = \int_A \rho^2 dA = I_{yy} + I_{zz} = I_1 + I_2$$

Kreise und Kreisringe

Torsionsspannung

• Torsionsspannung
$$\tau$$
:

$$\tau(\rho) = \frac{Mx}{I_P} \cdot \rho, \qquad \tau_m = \frac{M_x}{I_P} \cdot r$$

• Torsionswiderstandsmoment W_T:

$$W_T = \frac{I_P}{r}, \qquad au_{\max} = \frac{Mx}{W_T}$$

Polares Flächenmoment

$$I_{P} = \int_{A} \rho^{2} dA = \int_{0}^{r} \rho^{2} \cdot 2\pi \rho \cdot d\rho = \frac{\pi \cdot r^{4}}{2}$$

Kreisring

$$I_P = \frac{\pi \cdot R^4}{2} - \frac{\pi \cdot r^4}{2} = \frac{\pi}{2} (R^4 - r^4)$$

Alle anderen Querschnitte

Torsionsspannung

$$\tau_{\max} = \frac{M_x}{W_T}$$

★ W_T aus Schaeffler

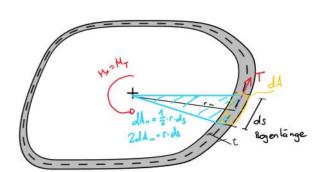
Torsionsflächenmoment

★ I_P aus Schaeffler

Torsionsspannung an dünnwandigen geschlossenen Hohlquerschnitten

Unabhängig von Form und auch inkonstant Dicke (t)

• Schubfluss: Schubfluss $au(t) \cdot t$ innerhalb des Profils an jeder Stelle konstant

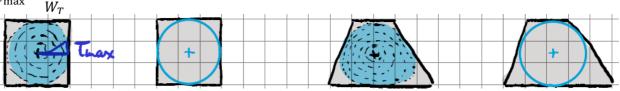

Somit wirkt in dA eine Schubkraft T

$$T = \tau(t) \cdot dA = \tau(t) \cdot t \cdot ds$$

$$\Rightarrow dM = T \cdot r = \tau(t) \cdot t \cdot ds \cdot r$$

Daraus folg M

$$M = \oint dM = \oint \tau(t) \cdot t \cdot r \cdot ds = \tau(t) \cdot t \cdot \oint r \cdot ds = \tau(t) \cdot t \cdot 2A_m$$



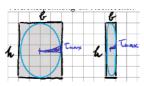
1. Bredt'sche Formel

$$\tau(t) = \frac{Mx}{2A_m t}, \qquad \tau_{\text{max}} = \frac{Mx}{2A_m \cdot t_{min}}$$

$$\Rightarrow W_T = 2 \cdot A_m \cdot t_{min}$$

Torsionsspannung an Vollprofilen

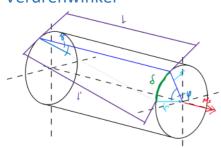
$$\tau_{\max} = \frac{M_x}{W_T}$$



★ sonst W_T aus Schaeffler

• An Rechtecken:

Formfaktoren benötigt:


$$I_T = \eta_1 \cdot b^3 \cdot h, \qquad W_T = \eta_2 \cdot b^2 \cdot h$$

Formfaktoren für Torsion an Rechtecken

/	1.00		l	1	l .					
η_1	0.140 0.208	0.171	0.196	0.229	0.263	0.281	0.299	0.313	0.333	.,
η_2	0.208	0.221	0.231	0.246	0.267	0.282	0.299	0.313	0.333	= 1/3

Torsion II Verdrehwinkel

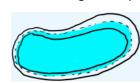
Da Verdrehung klein, gilt:

$$\delta = \gamma \cdot l^1 = \varphi \cdot r \Rightarrow \varphi = \gamma \cdot \frac{l'}{r}$$

$$\tau_{\text{max}} = G \cdot \gamma = \frac{M_x}{I_p} \cdot r \Rightarrow \gamma = \frac{M_x}{I_p \cdot G} \cdot r$$
Daraus folgt Verdrehwinkel φ (da kleine Verformung I = I'):

$$\varphi = \frac{M_{\chi} \cdot G}{I_P \cdot G}$$

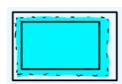
Kreis: $I_T = I_P$


★ Allg. für I_T siehe Schaeffler

Verdrehwinkel an dünnwandigen Hohlquerschnitten

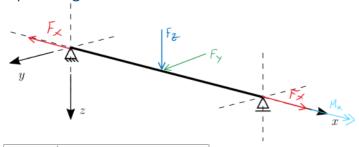
2. Bredt'sche Formel für allgemeine dünnwandige Hohlquerschnitte

$$\varphi = \frac{M_{\chi} \cdot l}{G \cdot I_T},$$


$$mit I_T = \frac{4 \cdot \mathbf{A_m^2}}{\int_S \frac{1}{t} d_S}$$

Für Profile mit stückweise konstanter Dicke (z.B. Rohre)

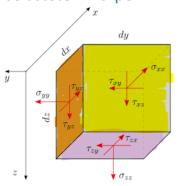
$$\varphi = \frac{M_{\chi} \cdot l}{G \cdot I_T}$$


$$mit \ I_T = \frac{4 \cdot A_m^2}{\Sigma_i \frac{h_i}{t_i}}$$

Drehfederkonstante

$$C_T = \frac{M_x}{\varphi} = \frac{G \cdot I_P}{L}, \qquad [\frac{Nm}{rad}]$$

Spannungszustand

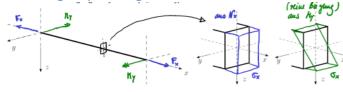


Last	Schnittkräfte / Spannung
F _x	$N_x(\sigma_x)$
Fz	$Q_z(\tau_{xz}), \qquad M_y(\sigma_{xx})$
Fy	$Q_y(\tau_{xy}), \qquad M_z(\sigma_{xx})$
M _x	$M_x(\tau_{xy}, bzw \ \tau_{xy})$

$au_{\chi y}$ Normale der Schnittfläche

Richtung der Spannung

Würfel mit infinitesimalem Volumen aus belastetem Körper


Daraus folgt folgender Spannungstensor σ:

$$\boldsymbol{\sigma} = \begin{pmatrix} \overline{\sigma_{xx}} & \tau_{xy} & \tau_{xz} \\ \overline{\tau_{yx}} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{pmatrix}$$

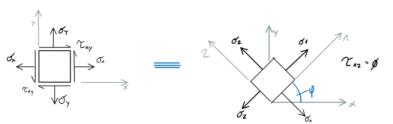
Normalspannung (aus Normalkräfte N & Biegemomente M) Schub- / Tangentialspannung (aus Querkräften und Torsionsmomente)

Dabei gilt
$$au_{xy} = au_{yx}$$

Einachsiger Spannungszustand

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{\chi} + \sigma_{\chi} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ebener Spannungszustand


Spannungen entlang einer Ebene

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_x & \tau_{xy} & 0 \\ \tau_{yx} & \sigma_y & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hauptspannungssystem

Gibt es einen ebenen Spannungszustand, der im x-y-Koordinatensystem mit σ_x , σ_y und τ_{xy} beschrieben wird, so gibt es den selben Spannungszustand auch durch die Hauptspannungen σ_1 und σ_2 beschrieben. In dem gedrehten 1-2-Koordinatensystem.

Es gilt:

- Hauptspannungen stehen senkrecht aufeinander
- Es wirken nur Hauptspannungen.
 - Schubspannungen $\tau_{12} = 0$
- $\bullet \ \ \, \text{Das Hauptspannungssystem ist um Winkel} \, \phi \, \text{gegen das x-y-System} \\ \text{gedreht:} \\$

$$\tan(2\varphi) = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

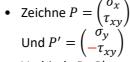
Hauptspannungen sind maximal auftretende Normalspannugen in der Ebene $\sigma_{1,2} = \sigma_{\max \min}$

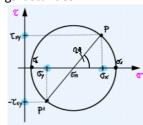
$$\sigma_{1,2} = \frac{1}{2} \left(\sigma_x + \sigma_y \right) \pm \frac{1}{2} \left(\sigma_x - \sigma_y \right) \cdot \cos(2\varphi) \pm \tau_{xy} \cdot \sin(2\varphi)$$

$$\Rightarrow \sigma_{1,2} = \frac{1}{2} \left(\sigma_x + \sigma_y \right) \pm \frac{1}{2} \cdot \sqrt{\left(\sigma_x - \sigma_y \right)^2 + 4 \left(\tau_{xy} \right)^2}$$

In jedem Koordinatensystem gilt:

$$\sigma_1 + \sigma_2 = \sigma_x + \sigma_y$$


3-Dimensional analog zu 2-Dimensional.


Mohr'sche Spannungskreis

Graphische Darstellung des ebenen Spannungszustandes

Vorgehen:

• Spannungstensor $\sigma = \begin{pmatrix} \sigma_x & \tau_{xy} \\ \tau_{xy} & \sigma_y \end{pmatrix}$

- Verbinde P P'
 - O Schnittpunkt mit σ-Achse ergibt σ_M Mittelspannung
- Zeichne Kreis um σ_M und durch P und P'

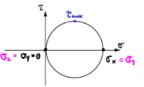
Dabei entsprechen die Schnittpunkte des Kreises mit der σ -Achse den Hauptspannungen. Und der Winkel zwischen Gerade P - P' entspricht $2\cdot \varphi$

Gedrehtes Koordinatensystem

Ebener Spannungszustand in einem gedrehten Koordinatensystem

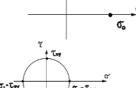
Der Spannungszustand kann in beliebig gedrehten Koordinatensystemen beschrieben werden. st ein x'-y'-Koordinatensystem gegenüber einem x-y-Koordinatensystem um einen Winkel θ verdreht, so können die Spannungen $\sigma_{x'y'}$ und $\tau_{x'y'}$ aus den Spannnungen σ_{xy} und τ_{xy} im x-y-System berechnet werden:

$$\sigma_{x',y'} = \frac{1}{2}(\sigma_x + \sigma_y) \pm \frac{1}{2}(\sigma_x - \sigma_y)\cos 2\theta \pm \tau_{xy}\sin 2\theta$$

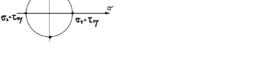

$$\tau_{x',y'} = -\frac{1}{2}(\sigma_x - \sigma_y)\sin 2\theta + \tau_{xy}\cos 2\theta$$

Das bereits besprochene Hauptspannungssystem (1,2) ist ein Spezialfall. Dort ist $\tau_{x'y'}$ =0 und $\sigma_{x'y'}$ jeweils maximal.

Spezialfälle am Mohr'schen Spannungskreis


Zugstab

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_{\chi} & 0 \\ 0 & 0 \end{pmatrix}$$


• Hydrostatischer Spannungszustand

$$\mathbf{r} = \begin{pmatrix} \sigma_{\chi} & 0 \\ 0 & \sigma_{y} = \sigma_{\chi} \end{pmatrix}$$

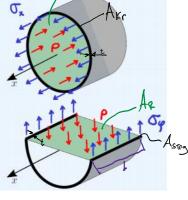
Reiner Schub

$$\boldsymbol{\sigma} = \begin{pmatrix} 0 & \tau_{xy} \\ \tau_{xy} & 0 \end{pmatrix}$$

Druckbehälter

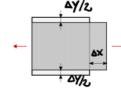
Spannung in einem unter konsten Druck p stehenden Druckbehälter. Durchmesser d = 2r und Wanddicke = t

 $\bullet \quad \sigma_x \text{ in L\"{a}ngsrichtung}$


$$\sigma_x = \frac{Kraft}{Fl\ddot{a}che} = \frac{A_F \cdot p}{A_{Kr}} = \frac{\pi \cdot r^2 p}{2 \cdot \pi \cdot r \cdot t} = \frac{p \cdot r}{2t}$$

• $\sigma_{\!arphi}$ in Umfangsrichtung

$$\sigma_{\varphi} = \frac{A_R \cdot p}{A_{Steg}} = \frac{2 \cdot r \cdot l \cdot p}{2 \cdot l \cdot t} = \frac{p \cdot r}{t}$$


--> Druckbehälter versagen in Längsrichtung (Bratwurst-Formel)

Verzerrungstensor ε

Beschreibt einen allg. 3-Dim. Verzerrungszustand an einem Punkt der Struktur

$$\varepsilon(x,y,z) = \begin{pmatrix} \varepsilon_{x} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{xy} & \varepsilon_{y} & \varepsilon_{yz} \\ \varepsilon_{xz} & \varepsilon_{yz} & \varepsilon_{z} \end{pmatrix} = \begin{pmatrix} \varepsilon_{x} & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\ & & \frac{1}{2}\gamma_{xz} & \frac{1}{2}\gamma_{yz} \\ & & \varepsilon_{y} & \frac{1}{2}\gamma_{yz} \\ sym. & & & \varepsilon_{z} \end{pmatrix}$$

Analog zu Hautpspannung kann auch hier eine Hauptverzerrung ausgerechnet werden.

Festigkeitshypothese

σ_{zul} ist die grösste zulässige Spannung. Ist dies nicht gegeben, muss z.B. der Querschnitt oder das Material geändert werden.

$$\sigma_{zul} = \frac{Re}{S} = \frac{Streckgrenze}{Sicherheitsfaktor}$$

Vergleichsspannung

Die Vergleichsspannung ist eine fiktive, einachsige Spannung, die in etwa eine gleichwertige Materialbeanspruch darstellt, wie ein realer mehrachsiger Spannungszustand.

$$\sigma_v \le \sigma_{zul} = \frac{Re}{S}$$

Normalspannungshypothese

Geeignet für spröde Werkstoffe (Gusseisen, Glas, Stein, Schweissnähte) unter Zug und Biegung.

• Die maximale Hauptspannung σ_1 muss kleiner sein als die zulässige Spannung σ_{zul} $\sigma_v = \sigma_1 \le \sigma_{zul}$

Schubspannungshypothese

Geeignet für spröde Werkstoffe (Gusseisen, Glas, Stein, Schweissnähte) unter Druck

- Hier gilt, die maximale Schubspannung beschreibt die Hauptbelastung
- Und $\sigma_v = 2 \cdot \tau_{\max}$
 - \circ Für den ebenen Spannungszustand $\tau_{max} = \frac{1}{2}(\sigma_1 \sigma_2) = \frac{1}{2}\sigma_v$

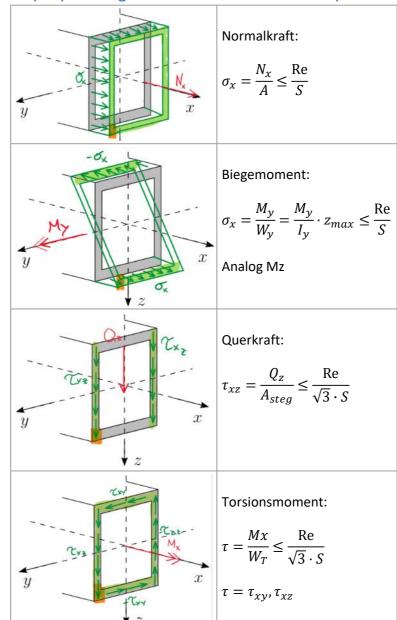
$$\sigma_v = \sigma_1 - \sigma_2 = \sqrt{\left(\sigma_x - \sigma_y\right)^2 + 4\left(\tau_{xy}\right)^2}$$

$$\sigma_v = \max(|\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1|)$$

Von Mises Vergleichsspannung (Gestaltsänderungshypothese)

Geeignet für zähe Werkstoffe (Walz- / Schmiedestahl)

- Ermittelt die Materialbeanspruchung aus der Energie, die erforderlich ist um die Gestalt zu ändern, während das Volumen konstant bleibt.
 - o Für den ebenen Spannungszustand:


$$\sigma_v = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \cdot \sigma_y + 3(\tau_{xy})^2}$$

$$\sigma_{v} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x} \cdot \sigma_{y} + 3\left(\tau_{xy}\right)^{2}}$$

$$\circ \text{ In 3-Dim.:}$$

$$\sigma_{v} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} - \sigma_{x} \cdot \sigma_{y} - \sigma_{x} \cdot \sigma_{z} - \sigma_{y} \cdot \sigma_{z} + 3\left(\tau_{xy}\right)^{2} + 3\left(\tau_{xz}\right)^{2} + 3\left(\tau_{yz}\right)^{2}}$$

Bsp. Spannungsnachweis an Rechteckhohlprofil

Kritische Stelle unten links (orange):

$$\Rightarrow \sigma_v = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2 - \sigma_x \cdot \sigma_y - \sigma_x \cdot \sigma_y - \sigma_y \cdot \sigma_z + 3 \cdot \tau_{xy}^2 + 3 \cdot \tau_{xz}^2 + 3 \cdot \tau_{yz}^2} = \sqrt{\sigma_x^2 + 3\tau_{xz}^2}$$

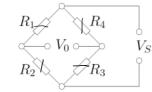
$$= \sqrt{\left(\frac{N_x}{A} + \frac{M_y}{W_y}\right)^2 + 3\left(\frac{Q_z}{A_{steg}} + \frac{M_x}{W_T}\right)^2} \le \frac{\text{Re}}{S}$$

Zusammenfassung Seite 8

Dehnungsmess-Streifen (DMS)

Der Widerstand in einem DMS ändert sich proportional zur Dehnung ebenjenes.

$$\Delta R \sim e \implies \Delta R = \alpha \cdot \varepsilon, \qquad \frac{\Delta R}{R} = k \cdot \varepsilon$$


Wheatstone'sche Messbrücke

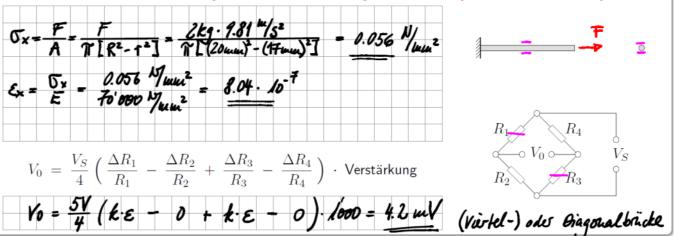
Grundgleichung:

$$V_0 = \frac{V_S}{4} \left(\frac{\Delta R_1}{211} - \frac{\Delta R_2}{R_2} + \frac{\Delta R_3}{R_3} - \frac{\Delta R_4}{R_4} \right)$$

V₀ = Messsigna

V_s = Angelegte Speisespannung

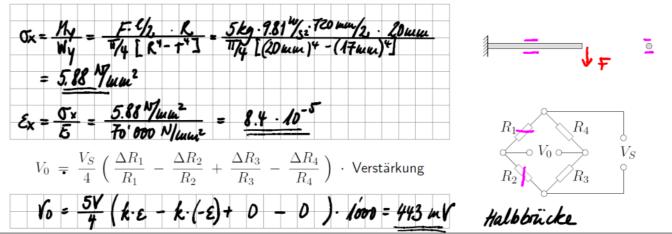
Anordnungen


Anordnungen		
Viertelbrücke	$R_1 \vee R_2 \vee R_3 \vee R_4$	R_1 $V_0 \circ$ V_S
Halbbrücke	$(R_1 \wedge R_2) \vee (R_3 \wedge R_4)$	R_1 V_0 V_S V_S
Diagonalbrücke	$(R_1 \wedge R_3) \vee (R_2 \wedge R_4)$	R_1 V_0 V_S V_S
Vollbrücke	$R_1 \wedge R_2 \wedge R_3 \wedge R_4$	R_1 R_4 V_S R_2 R_3

Beispiele

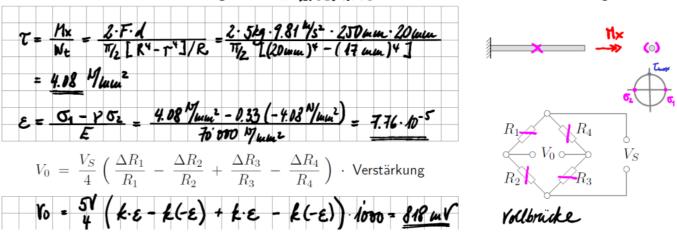
Beispiel: Dehnungssmessung am Zug-/Druckstab

Ein Aluminiumrohr mit R=20mm, t=3mm und Länge l=720mm wird mit einer Zugkraft am freien Ende belastet.


- a) Überlegen Sie, wie DMS zu platzieren wären und wählen Sie eine geeignete Brückenschaltung!
- b) Bestimmen Sie das erwartete Messsignal bei einer Last von 2kg, einem k= 2.44 und einer Verstärkung von 1000!

Beispiel: Dehnungsmessung am Kragarm

Ein Aluminiumrohr mit R=20mm, t=3mm und Länge l=720mm wird als Kragarm auf Biegung belastet.


- a) Überlegen Sie, wie DMS zu platzieren wären und wählen Sie eine geeignete Brückenschaltung!
- b) Bestimmen Sie das erwartete Messsignal bei einer Last von 5kg, einem k=2.11 und einer Verstärkung von 1000!

Beispiel: Dehnungssmessung am Torsionsstab

Ein Aluminiumrohr mit R=20mm, t=3mm und Länge I=720mm wird mit reiner Torsion belastet.

- a) Überlegen Sie, wie DMS zu platzieren wären und wählen Sie eine geeignete Brückenschaltung!
- b) Bestimmen Sie das erwartete Messsignal bei $M_x=27527$ www einem k=2.11 und einer Verstärkung von 1000!

Zusammenfassung Seite 9