HM1 Summary (beliebig lang)

29. September, 2023; rev. 11. Januar 2024 Linda Riesen (rieselin)

1 Vorlesung 01

1.1 Rechnerarithmetik

Wann wird approximativ gelöst:

- nicht möglich exakt zu lösen
- zu kompliziert/ zu aufwändig
- nicht nötig

1.1.1 Maschinenzahlen

Maschinenzahlen = Art wie ein Rechner Zahlen abspeichert, kann nicht unendlich viele abspeichern

beim Speichern von reellen Zahlen entsteht daher Rundungsfehler

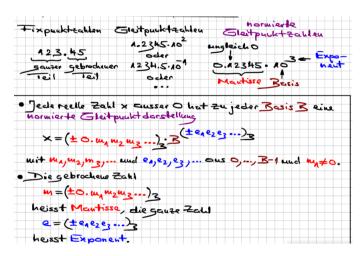


Abbildung 1: Übersicht Gleitpunktzahlen

Je länger die Mantisse desto genauer kann Zahl abgespeichert werden Je länger der Exponent desto grössere/kleinere Zahlen können abgespeichert werden

-> ansonsten gibt es positiven/negativen Overflow oder bei Abrundung auf 0 Underflow

2 Vorlesung 02

2.1 Float64

Standart für Numerische Berechnungen in Python Befolgt IEEE 754 (legt weltweit einheitlich fest, wie Gleitpunktzahlen in Rechnern abgespeichert werden

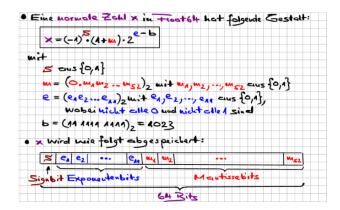


Abbildung 2: Aufbau Float64

- Normierung nicht durch m $1 \neq 0$ sondern durch Addierung von 1 zu m
- Exponent hat kein Vorzeichen, dies wird duch Abzug von b (=Bias = 1023) gelöst
- es gibt noch nicht normale Zahlen: ZBsp: 0, +/- inf

2.2 Rundungsfehler und Maschinengenauigkeit

a)
$$e_{\max}=(111)_2=4+2+1=7$$

b)
$$x_{\min}=B^{e_{\min}-1}=2^{-7-1}=2^{-8}=0.00390625=0.3906\cdot 10^{-2}$$

$$x_{\max}=(1-B^{-n})B^{e_{\max}}=(1-2^{-5})2^7=2^7-2^2=124=0.1240\cdot 10^3$$
 c)
$$eps_1=\frac{B}{2}B^{-n}=2^{-5}=0.03125$$

$$eps_2=\frac{B}{2}B^{-n}=8\cdot 16^{-2}=0.03125$$

Abbildung 3: Aufgaben Maschinengenauigkeit

Abbildung 4: Absoluter vs. Relativer Fehler:

Meist ist relativer Fehler aussagekräftiger als absoluter

2.2.1 Rundungsprinzipien

Reelle Zahlen werden auf nächstgelegene Maschinenzahl gerundet Liegt x genau in der Mitte wird auf betragsmässig grössere Zahl gerundet (Rounding ties away from 0)

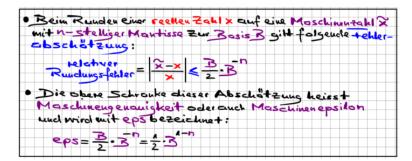


Abbildung 5: Rundungsfehler, Maschinengenauigkeit, Maschinenepsilon

2.3 Fehler bei Grundrechenoperationen und Auslöschung

2.3.1 Fehler bei Grundrechenoperationen

Passieren bei allen Operationen, auch bei eher kleinen Zahlen, durch; Normieren, Runden, Exponenten Angleichen, Operation durchführen, Runden, Denormieren bis zu etwa ϵ

2.3.2 Auslöschung

Bei Subtraktion von fast gleich grossen Zahlen kann ein grosser Relativer Fehler entstehen = Auslöschung:

Dabei löschen sich jeweils die Vorderen Signifikanten Stellen aus (da sie gleich sind) und es bleiben nur wenige Signifikante Stellen übrig

3 Vorlesung 03

3.1 Fehler bei Funktionsauswertung (Zsmhang Input/Output Fehler)

• Absolut: $|f(\tilde{x}) - f(x)| \approx |f'(x)| * |\tilde{x} - x|$

• Relativ:
$$\left| \frac{f(\tilde{x}) - f(x)}{f(x)} \right| \approx \left| \frac{\tilde{x} - x}{x} \right| * \left| \frac{f'(x) * x}{f(x)} \right|$$

• Konditionszahl: $K(x) = \left| \frac{f'(x) * x}{f(x)} \right|$

• Daraus folgt: $|\frac{(f(x)-f(x0))}{f(x0)}| = K(x0) * |\frac{(x-x0)}{x0}| => |x-x0| <= p/K(x0)*x0$

3.1.1 Konditionierung (unabhängig von Verfahren mit dem Funktion ausgewertet wird)

$$K(x) \le 10 => f(x)$$
 gut konditioniert $K(x) > 10 => f(x)$ schlecht konditioniert

3.2 Numerische Bestimmung von Nullstellen

Nullstellen: = 0 Auflösen

Fixpunkte: nach x Auflösen, = F(x) = Fixpunkt

- Intervallhalbierungsverfahren:
 - 1. Wähle Intervall $[x_L, x_R]$ mit $[y_L = g(x_L) < 0$ und $y_R = g(x_R) > 0$
 - 2. Bilde Intervallmitte: $x_M = (x_L + x_R)/2$ und $y_M = g(x_M)$
 - 3. Prozess:
 - Wenn: $y_M > 0$ ersetze x_L durch x_M -> neues Intervall
 - Wenn: $y_M < 0$ ersetze x_R durch x_M -> neues Intervall
- Fixpunktiteration (Vorlesung 04)
- Newton-Verfahren

4 Vorlesung 04

4.1 Definitionen Fixpunktiteration

- Zahl \bar{x} heisst Fixpunkt von Funktion, wenn gilt: $F(\bar{x}) = \bar{x}$
- jede Gleichung in x kann umgeformt werden auf Fixpunktform (x = F(x) = ...)
- Fixpunktiteration: x0, x1 = F(x0), x2 = F(x1), ...
- Wenn F mit x0 konvergiert, dann immer gegen einen Fixpunkt $F(\bar{x})$ -> numerisches Verfahren z. Bestimmung von Fixpunkten

- Kann auch divergieren: dann kann Fixpunkt nicht bestimmt werden/ existiert nicht
- Damit F mit x0 konvergiert muss (= Anziehender Fixpunkt): $|F'(\bar{x})| < 1$ und x0 nahe \bar{x} , sonst divergiert (= Abstossender Fixpunkt)
- Banachsche Fixpunktsatz: Kriterien f. Eindeutigkeit und Existenz v Fixpunkt, Konvergenz Fixpunkiteration, Fehlerabschätzung
 - Wenn F:I[a,b] -> R eine Funktion bei der I stetig differenzierbar
 - $\lambda = \max |F'(x)|$ mit $[a \le x \le b]$ (betragsmässig grösster Wert der Ableitung)
 - wenn $\lambda < 1$:
 - * F hat genau einen Fixpunkt \bar{x} in I
 - \star die Fixpunktiteration konvergiert für j
den Startwert x0 gegen \bar{x}
 - * Es betragen $|x_n \bar{x}| \le \frac{\lambda^n}{1-\lambda} * |x_1 x_0|$ [a-priori Fehlerabschätzung] $|x_n \bar{x}| \le \frac{\lambda^n}{1-\lambda} * |x_n x_{n-1}|$ [a-posteriori Fehlerabschätzung]

5 Vorlesung 05

5.1 Newtonverfahren

Vorteile: konvergiert fast immer und meist sehr schnell (Konvergenzordnung: 2)

- 1. Gleichung auf 0 auflösen
- 2. Startwert nahe Nullstelle \bar{x} wählen
- 3. Tangente an Stelle x0 an den Graphen legen, Schnittstelle mit x Achse = x1
- 4. Wiederholen von 3 um x2 zu erhalten

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Konvergiert sicher (kann auch sonst) wenn: Nullstelle, Startwert und alle Iterierten Werte im Intervall [a,b] liegen sodass: [für alle x aus [a,b]

$$|\frac{f(x_n) * f''(x_n)}{f'(x_n)^2}| < 1$$

5.1.1 Vereinfachtes Newton-Verfahren

Konvergiert i.d. Regel auch aber langsamer (Konvergenzordnung: 1)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

5.2 Sekanten-Verfahren

Mit 2 Startwerten eine Sekante an Graph und schneiden mit x Achse (Konvergenzordnung: 1.6)

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} * f(x_n)$$

Konvergiert langsamer als Newton, schneller als Vereinfacht Newton, Kommt ohne Ableitung aus

5.3 Konvergenzordnung

Mass für Konvergenzgeschwindigkeit eines iterativen Verfahrens Mit [q Zahl ≥ 1 , x_n Zahlenfolge Resultate v. iterativem Verfahren] Dann hat Verfahren die Konvergenzordnung q wenn c > 0 existiert.

$$|x_{n+1} - \bar{x}| \le c * |x_n - \bar{x}|^q$$

Wenn q = 1 muss c < 1 und ist lineare Konvergenz, q = 2: quadratische Konvergenz

Um aus Resultatwerten Konvergenzordnung zu erhalten: Pröbeln f q damit c konstant

$$c = \frac{|x_{n+1} - \bar{x}|}{|x_n - \bar{x}|^q}$$

5.4 Fehlerabschätzungskriterium

Feststellung ob absolute Fehler $|x_n-\bar{x}|$ kleiner als Vorgegebene Schranke $\epsilon>0$ Wenn $f(x_n-\epsilon)*f(x_n+\epsilon)<0$ gilt $|x_n-\bar{x}|<\epsilon$

6 Vorlesung 06

Lineare Gleichungssysteme Gauss Algorithmus (idee, elementare operatinen, Stadndartisiert, Pivotisierung) LGS Anwendung: Bsp PageRank (Google, wichtigkeit d Websites)

6.1 LGS Bezeichnungen

- System von m linearen Gleichungen mit n Unbekannten = m*n LGS
- Zahlenwerte = Koeffizienten, Zahlenvariablen = Unbekannte
- kann dargestellt werden als A*x=b mit [A (Grossbuchstabe) = Matrix]
- wenn Anz Unbekannte = Anz Gleichungen: Koeffizientenmatrix A ist quadratisch
- LGS ist **regulär** wenn Determinante $\neq 0$

6.2 Gauss-Algorithmus

Vorwärtselimination und Rückwärtseinsetzen

Elementare Zeilenoperationen (z Vorwärtselimination)

- Zeilensubtraktion: v. einer Zeile wird ein Vielfaches einer darüberliegenden Zeile subtrahiert
- Zeilenvertauschung: Zwei Zeilen werden vertrauscht
- Pivots müssen in Numerik nicht 1 sein, einfach nicht 0

6.3 Pivotisierung (numerische Fehlerproblematik)

Wenn grösse d Zahl gegeben: (bsp 2 Mantissestellen) entsteht Fehler durch runden und bei Division s. grosser Fehler

Daher muss immer die Betragsmässig grösste Zahl als Pivot hochgetauscht werden

7 Vorlesung 07

7.1 Lineare Gleichungssysteme: LR-Zerlegung

Gleichungssystem: $A^*x=b$ [mit A = Matrix, x,b = Vektoren]

- 1. Matrix A wird mit Gauss-Algorithmus auf rechts-obere Dreiecksform R gebracht (alles unter Diagonale ist 0, Diagonale egal)
- 2. Falls Gauss Algorithmus ohne Zeilenvertauschungen durchgeführt werden kann ergibt sich L (links untere Dreiecksmatrix, alles 0 oberhalb der Diagonale, Diagonale ist 1)
- 3. Damit ist A = L*R
- 4. $L^*y = b \text{ (nach y)}$
- 5. $R^*x = y$ (nach x) [mit x ist tatsächliche Lösunng des LGS]

Abbildung 6: Linksuntere Dreiecksmatrix

7.2 Lineare Gleichungssysteme: PLR Zerlegung

Falls Zeilenvertauschung benötigt (zBsp wegen Pivotisierung) muss LR zu PLR erweitert werden.

P*A = L*R [mit P = Permutations matrix: quadratische Matrix wie Einheitsmatrix aber Zeilen in anderer Reihenfolge]

- 1. R entsteht wie bei LR
- 2. L entsteht wie LR aber wenn Zeilen vertauscht werden müssen auch Einträge in L vertauscht werden
- 3. P entsteht aus Einheitsmatrix die dieselben Vertauschungen erhält

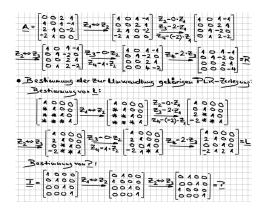


Abbildung 7: PLR Zerlegung

8 Vorlesung 08

8.1 Orthogonale Matrizen

Eine n*n Matrix Q heisst orthogonal wenn: $Q^T * Q = I$ mit [I = Einheitsmatrix] Eigenschaften Orthogonale Matrizen:

- Spaltenvektoren stehen paarweise senkrecht und haben Länge 1
- Orthogonale Matrizen sind **regulär**: $Q^{-1} = Q^T$
- Produkt von 2 orthogonalen Matrizen ist wieder orthogonale Matrix
- Orthogonale Matrizen sind **gut konditioniert**: falls x und \tilde{x} nahe beieinander sind auch Q*x und $Q*\tilde{x}$ nahe beieinander

8.2 QR - Zerlegung

A = Q*R mit [A = n*n Matrix, R = rechtsobere Dreiecksmatrix, Q = Orthogonale Matrix]

QR Zerlegung exisitiert zu jeder n*n Matrix und ist eindeutig bis auf Vorzeichen

8.3 Lösen von LGS via QR Zerlegung

- 1. A * x = b [ein LGS]
- 2. A = Q * R [eine QR Zerlegung von A]
- 3. Q * R * x = b
- 4. $R*x=Q^T*b$ [$Q^{-1}=Q^T$]: Zu Lösen durch Rückwärtseinsetzen

8.4 Householder Matrizen

Matrix H (n*n) der Form: $H = I - 2 * \mu * \mu^T$ mit [I = Einheitsmatrix, μ Vektor d Länge 1]

Eigenschaften:

- Householder Matrizen sind orthogonal
- Geometrisch: Spiegelung:
 - n=2: Spiegelung an Geraden die Senkrecht zu μ
 - n=3: Spiegelung an Ebene Senkrecht zu μ
 - n>3: (Hyperraum) => Hyperebene die Senkrecht zu μ

8.4.1 Berechung QR Zeregung mit Householder-Verfahren

Braucht n-1 Iterationen

- 1. Initialiesierung: R = A und $Q = I_n$
- 2. i-te Iteration:
 - $A_i = R$

- a_i (= i-te Spalte)
- $a_{i,1}$ (oben links Zahl)
- $||a_i||$ (Länge Vektor)
- $sign(a_{i,1})$ (1 für $a_{i,1} \ge 1$ sonst -1)
- e_1 (Einheitsvektor mit erster Zahl = $a_{i,1}$)
- $v_i = a_i + sign(a_{i,1}) * ||a_i|| * e_1$
- $\bullet \ \mu_i = \frac{1}{||v_i||} * v_i$
- $H_i = I_{n-i+1} 2 * \mu * \mu^T$
- $\bullet \ Q_i = \begin{pmatrix} I_{i-1} & 0 \\ 0 & H_i \end{pmatrix}$
- $R_{neu} = Q_i * R_{alt} \text{ und } Q_{neu} = Q_{alt} * Q_i^T$

9 Vorlesung 09

9.1 Eigenwert

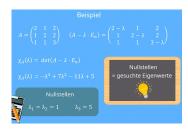


Abbildung 8: Eigenwerte Berechnung

9.2 Vektor (x) und Matrizen (A) Normen

- 1-Norm / Summennorm: $||x||_1 = |x_1| + ... + |x_n|$
- 2-Norm / Euklidsche Norm: $||x||_2 = \sqrt{x_1^2 + \ldots + x_n^2}$
- ∞ Norm / Maximumnorm: $||x||_{\infty} = max(|x_1|,...,|x_n|)$

- 1-Norm / Spaltensummennorm: $||A||_1 = max(|x_{11}| + ... + |x_{n1}|, ..., |x_{1n}| + ... + |x_{nn}|)$
- 2-Norm / Spektralnorm: $||x||_2 = max(\sqrt{\lambda})$ mit λ ist Eigenwert von $A^T * A$
- ∞ Norm / Zeilensummennorm: $||A||_{\infty} = max(|x_{11}| + ... + |x_{1n}|, ..., |x_{1n}| + ... + |x_{n1}|)$

Eigenschaften Normen

- $||x|| \ge 0$ und $||A|| \ge 0$
- ||x|| = 0 <=> x = 0 und ||A|| = 0 <=> A = 0
- $||\lambda * x|| = |\lambda| * ||x|| \text{ und } ||\lambda * A|| = |\lambda| * ||A||$
- $||x+y|| \le ||x|| + ||y||$ und $||A+B|| \le ||A|| + ||B||$
- für jeweils jd entsprechenden Normen (1 und 1 Norm) gilt: $||A*x|| \le ||A||*||x||$

9.3 Lineare Gleichungssysteme: Fehlerrechnung

Wie stark ändert sich die Lösung eines linearen Gleichungssystems wenn deren Koeffizienten sich ändern? Können durch Normen quantifiziert werden. mit [A*x=b und $A*\tilde{x}=\tilde{b}]$:

- $||\tilde{x} x|| < ||A^{-1}|| * ||\tilde{b} b||$
- $\frac{||\tilde{x}-x||}{||x||} \le ||A|| * ||A^{-1}|| * \frac{||\tilde{b}-b||}{||b||}$
- $cond(A) = ||A|| * ||A^{-1}||$: gross = schlecht konditioniert

mit $[A*x=b \text{ und } \tilde{A}*\tilde{x}=\tilde{b}] \text{ und } [cond(A)*\frac{||\tilde{A}-A||}{||A||}<1]$:

•
$$\frac{||\tilde{x}-x||}{||x||} \le \frac{cond(A)}{1-cond(A)*\frac{||\tilde{A}-A||}{||A||}}*(\frac{||\tilde{A}-A||}{||A||}+\frac{||\tilde{b}-b||}{||b||})$$

9.4 Aufwandabschätzung

Für d Lösen eines LGS mit n Gleichungen und n Unbekannten im Gauss-Algorithmuss müssen (für grosse n): $\frac{2}{3}*n^3$ Grundrechenoperationen durchgeführt werden

Bsp: Rechner kann 10^9 Floats/Sekunde ausführen, für $n=10^3=>$ 2/3 Sekunden

10 Vorlesung 10

10.1 Iterative Lösungsverfahren

Iterative Lösungsverfahren haben deutlich kleineren Rechenaufwand als bsp Gauss-Algorithmus (nur n^2 statt n^3 für n*n LGS), Liefern aber nur Näherungslösungen und haben manchmal keine Konvergenz

Grundprinzip

- 1. Lineares Gleichunssystem: A*x = b
- 2. Fixpunktform: x = F(x)
- 3. Fixpunktiteration: x1 = F(x0)...

10.1.1 Jacobi Verfahren (= Gesamtschrittverfahren)

 $A^*x = b$ wird mit Jacobi Verfahren ausgehend von einem Startvektor x0 durch die Iteration: Mit [D,L und R = Diagonal, Links und Rechtsteil von A]

$$x^{(k+1)} = F(x^{(k)}) = B * x^{(k)} + c$$

$$B = -D^{-1} * (L + R)$$
 und $c = D^{-1} * b$

Leitheis piel Zum Ersten (aus Skupt)

A · X = b mit
$$A = \begin{bmatrix} 4 & -4 & 4 \\ -2 & 5 & 4 \\ -2 & 5 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 43 \\ 42 \end{bmatrix}$ und Lösung $x = \begin{bmatrix} 4 \\ 23 \end{bmatrix}$

H × 4 - × 2 + × 3 = S

A · X = b - + 2× 4 + 5× 2 + × 3 = A1 - 5× 3 = 2× 4 - × 3 + A6

× 4 - 2× 2 + 5× 3 = A2

× 4 - 2× 2 + 5× 3 = A2

× 3 = -0.2 × 3 + A2

× 2 = 0.4 × 4 - 0.25 × 3 + A.25

× 2 = 0.2 × 4 + 0.4 × 3 + 2.4

- × 2 = 0.4 × 4 - 0.2 × 3 + 4.25

× 3 = -0.2 × 4 + 0.4 × 3 + 2.4

- × 2 = 0.4 × 4 - 0.2 × 3 + 2.2

× 3 = -0.2 × 4 + 0.4 × 3 + 2.2

× 3 = -0.2 × 4 + 0.4 × 3 + 2.2

× 3 = -0.2 × 4 + 0.4 × 3 + 2.2

× 3 = -0.2 × 4 + 0.4 × 3 + 2.2

× 3 = -0.2 × 4 + 0.4 × 3 + 2.2

× 3 = -0.2 × 4 + 0.4 × 3 + 2.2

× 3 = -0.2 × 4 + 0.4 × 3 + 2.2

× 4 = -0.2 × 4 + 0.4 × 3 + 2.2

× 4 = -0.2 × 4 + 0.4 × 3 + 2.2

× 4 = -0.2 × 4 + 0.4 × 3 + 2.2

× 4 = -0.2 × 4 + 0.4 × 3 + 2.2

× 4 = -0.2 × 4 + 0.4 × 3 + 2.2

× 4 = -0.2 × 4 + 0.4 × 3 + 2.2

× 4 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.2

× 5 = -0.2 × 4 + 0.4 × 3 + 2.4

× 6 = -0.2 × 4 + 0.4 × 3 + 2.4

× 7 = -0.2 × 4 + 0.4 × 3 + 2.4

× 7 = -0.2 × 4 + 0.4 × 3 + 2.4

× 7 = -0.2 × 4 + 0.4 × 3 + 2.4

× 8 = -0.2 × 4 + 0.4 × 3 + 2.4

× 1 = -0.2 × 4 + 0.4 × 3 + 2.4

× 2 = -0.2 × 4 + 0.4 × 3 + 2.4

× 2 = -0.2 × 4 + 0.4 × 3 + 2.4

× 1 = -0.2 × 4 + 0.4

× 2 = -0.2 × 4 + 0.4

× 2 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 2 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 2 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 3 = -0.2 × 4 + 0.4

× 4 = -0.2 × 4 + 0.4

× 5 = -0.2 × 4 + 0.4

× 5 = -0.2 × 4 + 0.4

× 5 = -0.2 × 4 + 0.4

× 5 = -0.2 × 4 + 0.4

× 5 = -0.2 × 4 + 0.4

× 5 = -0.2 × 4 + 0.4

× 5 = -0.2 × 4 + 0.4

Abbildung 9: Jacobi Verfahren

$$\frac{\mp (\overline{x}_{(k)})}{\overline{x}_{(k+k)}} = -\overline{D}_{\frac{1}{2}}(\overline{\Gamma} + \overline{K}) \cdot \overline{x}_{(k)} + \overline{D}_{\frac{1}{2}} \cdot \overline{P}$$

$$\rightarrow \overline{x}_{(k+k)} = \overline{D}_{\frac{1}{2}}(-(\overline{\Gamma} + \overline{K}) \cdot \overline{x}_{(k)} + \overline{P})$$

$$\rightarrow \overline{D} \cdot \overline{x}_{(k+k)} = -(\overline{\Gamma} + \overline{K}) \cdot \overline{x}_{(k)} + \overline{P}$$

$$\rightarrow \overline{D} \cdot \overline{x}_{(k+k)} = -\overline{\Gamma} \cdot \overline{x}_{(k)} - \overline{K} \cdot \overline{x}_{(k)} + \overline{P}$$

Abbildung 10: Jacobi Verfahren Umformungen

10.1.2 Gauss Seidel Verfahren (= Einzelschrittverfahren)

Wird gleich wie bei Jacobi auf Fixpunktform gebarcht, aber Iteration wird nacheinander durchgeführt und direkt für die neue Zeile die berechneten Werte eingesetzt.

 $A^*x = b$ wird mit Gauss Seidel Verfahren ausgehend von einem Startvektor x0 durch die Iteration: Mit [D,L und R = Diagonal, Links und Rechtsteil von A]

$$x^{(k+1)} = F(x^{(k)}) = B * x^{(k)} + c$$

$$B = -(L+D)^{-1} * R$$
 und $c = (L+D)^{-1} * b$

Abbildung 11: Gauss-Seidel Verfahren

$$\overline{\underline{x}} (\underline{x}_{(k)})$$

$$\overline{\underline{x}} (\underline{x}_{(k)}) = -(\underline{D} + \Gamma_{1} \cdot \underline{x}_{(k)} + (\underline{D} + \Gamma_{1} \cdot \underline{x}_{(k)}) + \underline{P})$$

$$\overline{\underline{x}} (\underline{x}_{(k)}) = -(\underline{D} + \Gamma_{1} \cdot \underline{x}_{(k)} + \underline{P})$$

$$\overline{\underline{y}} \cdot \underline{x}_{(k+1)} = -\underline{x} \cdot \underline{x}_{(k)} + \underline{P}$$

$$\overline{\underline{y}} \cdot \underline{x}_{(k+1)} = -\underline{x} \cdot \underline{x}_{(k)} + \underline{P}$$

$$\overline{\underline{y}} \cdot \underline{x}_{(k+1)} = -\underline{x} \cdot \underline{x}_{(k)} + \underline{P}$$

Abbildung 12: Gauss-Seidel Verfahren Umformungen

11 Vorlesung 11

11.1 Iterative Lösungsverfahren

11.1.1 Ableitungen v Matrizen

Pro Zahl in der Matrix eine Ableitung. Da wird dann diese Zahl als unbekannte, der Rest als Konstanten gesetzt.

Dadurch entsteht dann auch Ableitungsmatrix

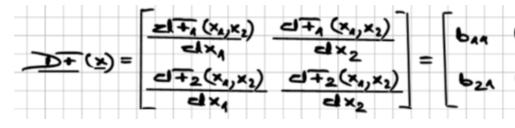


Abbildung 13: Ableitungsmatrix

11.1.2 Anziend / Abstossende Fixpunkte

Abbildung 14: Anziehende und Abstossende Fixpunkte

11.1.3 Fehlerabschätzung

Abbildung 15: Konvergenz und Fehlerabschätzung, Nötige Anzahl Iterationen

Wenn LGS Diagonaldominate Matrix A: dann konvergiert sowohl Jacobi als auch Gauss-Seidel.

11.1.4 Diagonaldominanz

Eine quadratische Matrix ist diagonaldominant wenn eine der beiden Bedinungnen zutrifft.

- In jeder Zeile ist das Diagonalelement betragsmässig Grösser als Summe (der Beträge) aller anderen Elemente in der Zeile
- In jeder Spalte ist das Diagonalelement betragsmässig Grösser als Summe (der Beträge) aller anderen Elemente in der Spalte

11.2 Komplexe Zahlen

i = imaginäre Einheit, $i = \sqrt{-1}$, Erweiterung der reellen Zahlen in die komplexen Zahlen

```
Die Menge der Komplexen Zahlen ( basteht aus allen Zahlen der torm

Z=x+y·i),

Wobei x wud y beeke Zahlen sind und i ein Symbol mit der Eisanschaft

i²=-1.

Das Symbol i heisst imaginale Einheit. Die reelle Zahl x heisst Keatleil von Z. die reelle Zahl y Luaginanteil von Z. Man Schneibt: x = Re(z) und y = In(z).

Eine komplexe Zahl z=x+iy kaun als i und in der Ebana mit Koordinahn (x,y) ocher als Vektor mit komponenten (x) dargeshilt werden. Die Bono heisst dann komplexe Zahlen ebene.

Die komplexe Zahl z=x+y·i heisst die zu z=x+y·i konjugiert komplexe Zahl. z*entsteht aus z durch Spiestung zunder x-Achse.

e Die reelle Zahl | z=x²+y² heisst Retrey von z=x+y·i.

Der Betrag ist gleich der Lönge des Vektors ().
```

Abbildung 16: Definition Komplexe Zahlen

Rechenregeln bleiben erhalten:

- Addition / Subtraktion: x-y = (2+4i) (-2+i) = 2+2+4*i-i = 4+3*i
- Multiplikation / Division: $i * i = i^2 = -1$, bei Divisiono auf reellen Nenner erweitern versuchen.

12 Vorlesung 12

12.1 Komplexe Zahlen

12.1.1 Normalform

$$z = x + y * i$$

Mit [x, y = reelle Zahlen, $i^2 = -1$ = imaginäre Einheit, x = Realteil, y = Imaginärteil]

12.1.2 Polarform = trigonomentrische Form

Geometrische Darstellung von z als Punkt/Vektor in Ebene Mit [r = Abstand Nullpunkt-z (Polarradius), φ = Winkel zwischen x-Achse und z (Polarwinkel) (Gegenuhrzeigersinn, in Radien (π))]

- $x = r * cos(\varphi)$
- $y = r * sin(\varphi)$
- $r = \sqrt{x^2 + y^2}$

•

$$\varphi = \begin{cases} \text{für x>0} : tan^{-1}(\frac{y}{x}) \\ \text{für x<0} : tan^{-1}(\frac{y}{x}) + \varpi \end{cases}$$

12.1.3 Euler'sche Formel

Entsteht aus Potenzreihen

$$e^{i*\varphi} = cos(\varphi) + i*sin(\varphi)$$

mit falls $\varphi=\pi$ entsteht ßchönste Formel der Mathematik: $e^{i*\pi}+1=0$

12.1.4 Exponentialform

$$z = x + y * i = r * cos(\varphi) + r * sin(\varphi) * i = r * (cos(\varphi) + i * sin(\varphi))$$
$$z = r * e^{i*\varphi}$$

12.1.5 Division / Multiplikation / Potenz / Wurzel

- $z1 * z2 = r1 * r2 * e^{i*(\varphi 1 + \varphi 2)}$
- $z1/z2 = r1/r2 * e^{i*(\varphi 1 \varphi 2)}$
- $z^n = (r * e^{i*\varphi})^n = r^n * (e^{i*\varphi})^n = r^n * e^{i*n*\varphi}$
- Wurzeln sind nicht eindeutig:

Es seien weine komplexe Zahl mit Exponentialform were. $e^{i\phi}$ und neine positive gause Zahl. Dann besitst we chie notes the separate $\varphi_k = \frac{\varphi + k \cdot 2\pi}{n}$ für $k = 0 \cdot 4 \cdot \dots \cdot 10^{n-4}$ Die neueren Zo, $z_0 \cdot \dots \cdot z_n \cdot 10^{n-4}$ bilden in der komplexen Zahlensbewe chie Ecken einer segalmässigen n-Ecke.

Abbildung 17: Wurzeln Komplexe Zahlen

13 Vorlesung 13

13.1 Eigenwerte (EW) und Eigenvektoren (EV) von Matrizen

13.1.1 Definition

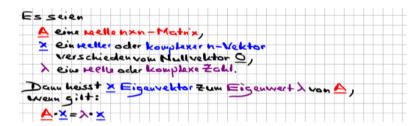


Abbildung 18: Definition Eigenwerte / Eigenvektoren

13.1.2 Eigenschaften

A ist reelle n*n Matrix E ist n*n Einheitsmatrix

- Ist x EV zum EW λ einer Matrix A, dann ist auch jedes Vielfache $x' = \lambda * x$ mit $[\lambda \neq 0]$ EV zum EW λ von A
 - usually wird von den EV die Vielfache voneinander sind derjenige mit
 2-Norm 1 angegeben
- der Term $p(\lambda) = det(A \lambda * E)$ ein Polynom (Grad n in λ) und heisst charakteristisches Polynom von A
- Eigenwerte λ von A sind Nullstellen von $p(\lambda)$
- In $\mathbb C$ besitzt $p(\lambda)$ immer genau n Nullstellen und damit A immer genau n Eigenwerte, wobei teilweise mehrfach auftreten können
- Die Vielfachheit mit welcher EW λ Nullstelle von p(λ) ist heisst **algebraische Vielfachheit** des EW λ
- Die Menge aller Eigenwerte heisst Spektrum von A
- Das Maximum der Beträge aller Eigenvektoren heisst Spektralradius von A
- Alle Eigenvektoren x zu einem EW λ bilden zusammen mit dem Nullvektor einen Vektorraum (= Eigenraum zum EW λ
- Die Dimension des Eigenraums heisst geometrische Vielfachheit
- geometrische Vielfachheit von EW ≤ algebraische Vielfachheit EW

13.1.3 Berechnung

A reelle n*n Matrix:

- Eigenwerte λ von A sind Lösungen von: $det(A \lambda * E) = 0$ [mit E = ist n*n Einheitsmatrix]
- zu einem Eigenwert λ gibt es unendlich viele Eigenvektoren x. Diese sind Lösungen des LGS: $(A-\lambda*E)*x=0$

14 Vorlesung 14

Eigenwerte (EW) und Eigenvektoren (EV) von Matrizen

14.1 EW von Dreiecksmatrizen

EW von Dreiecksmatrix sind die Werte auf der Diagonale

14.2 Ähnliche Matrizen

Zwei n*n Matrizen A und B heissen ähnlich, wenn es eine reguläre n*n Matrix I gibt, sodass:

$$B = I^{-1} * A * I$$

Eigenschaften v. ähnlichen Matrizen

- A und B haben die gleichen EW mit den gleichen algebraischen und geometrischen Vielfachheiten
- Ist x ein EV zum EW λ von B dann ist I*x EV zum EW λ von A

14.3 Diagonalisierbare Matrizen

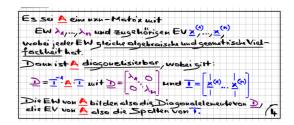


Abbildung 19: Definition Diagonalisierbare Matrizen

14.4 Numerische Berechnung aller EW mit QR-Verfahren

Matrix A mit QR-Zerleguung näherungsweise in eine zu A ähliche Dreiecksmatrix R transformieren => EW sind Nährerungsweise gleich den Diagonalelementen

```
Durchführung

Start: Satie Mosa

1. Start: S
```

Abbildung 20: Durchführung

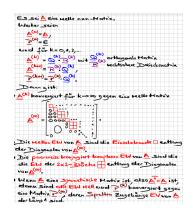


Abbildung 21: QR - Verfahren Satz

14.5 Numerische Berechung ders betragsmässig grössten EW und zugehörigen EV mit Vektoriteration (= Mises Iteration)

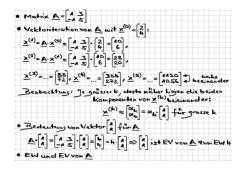


Abbildung 22: Vektoriteration

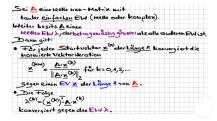


Abbildung 23: Satz Vektoriteration