Rebecca Nauli

GSTAT Summary

Inductive Statistics

General procedure: Translate what is known about the phenomenon under investigation
into a statistical model and the question of interest into a question about unknown parame-
ters of the model.
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Figure 1. Relation of data and model in probability theory and inductive statistics

Model: is an idealised picture of the population and also includes aspects

of the data collection process.

a specific family of distributions is assumed (normal, bino-

mial, ...). Only one or at most finitely many parameters are un-

known.

Non-parametric models: are not models that have no unknown parameters, but the de-
termination of individual parameters does not uniquely define
the distribution. One can estimate:

Parametric models:

e  Expected value

e Variance

e Median

e 75% quantile
Without having to make a specific distribution assumption.
Non-parametric models make fewer assumptions and are there-
fore more universally applicable. However, the accuracy of the re-
sults is often reduced.
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e.g. the lifetime of a randomly selected component = realization
ofarvX

A variable which can take different values by chance under cer-
tain constant condition is called random variable.

Realizations:

Random variable (rv):

iid: independent and identical distributed
e mean

o standard deviation (SD)

o2 Variance (Var)

Examples and Distributions

e Machine producing screw = normal distribution
e  Fish in a lake (capture-recapture) = urn problem — hypergeometric distribution
e Duration of components = exponential distribution

Simulation
replicate()
function() {}
Example 1
getpVals <- function(mu = 0, n = 10, nsim = 10000){
replicate(nsim,
t.test(rnorm(n, mean = mu, sd = 1), alternative="two.sided")$p.value)
}
Example 2
sim <- function(n) {
x <- rnorm(n, 0, 1)
ci_zl <- z.test(x = x, sigma.x = 1)$conf.int # true value, unknown in practice
ci_z2 <- z.test(x = x, sigma.x = sd(x))$conf.int # cheating
ci_t <- t.test(x = x)$conf.int # correct one
c(in_zl = ((ci_z1[1] <= 0) & (ci_z1[2] >= 0)),
in z2 = ((ci_z2[1] <= 0) & (ci_z2[2] >= 0)),
in_t = ((ci_t[1] <= 0) & (ci_t[2] >= 0)))

}
Note: the difference between knowing the variance and estimating it is not so relevant in
large samples but substantial in small samples.
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Law of Large Numbers states that the arithmetic mean approaches the expected value

(LLN) with increasing n
With
n
— 1
Xn = EZXI
_ i=1
E(Xp)=u
— O'2
Var(X,) = ry
Weak LLN forany e >0

lim P(|X,—ul>&)=0
n-oo

As n increases, the arithmetic mean of X3, X5, ..., X,, behaves like a normally distributed
random variable with expectation equal to the expectation of the X; and variance converg-
ing to zero. - stronger statement than LLN

Consider a sequence X1, X2,... of independent identically distributed random variables with
E(Xi) = pand Var(Xi) = o2.

Then:
Vnx (X, — wo -~ N(0,1)
or
Xp o~ N pyo2n
Summary:

e With increasing n, sum and arithmetic mean of iid rv's behave — independently of the
original distribution! — more and more like normally distributed random variables

e How large n has to be for a good approximation does depend on the original distri-
bution of the Xi

e Rule of thumb: n @ 25 or n & 30 | The approximation is already good for small n, if
the shape of the original distribution is already very similar to the normal distribution

e Larger n required if distribution is strongly asymmetric or has heavy tails.

e The approximation “in the middle” of the distribution is better than in the tails for an
accurate approximation of extreme quantiles we need a larger n

e There are also distributions that are so “wide"” that the variance or even the expected
value do not exist (e.g. Cauchy distribution) = CLT does not work!
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Point Estimation
Point estimate: only a concrete best guess (single value) for one or more un-
known parameter is wanted.

Estimate unknown parameters of distribution models for data

Model: X;, X5, ... X, drawn iid from some distribution with unknown parameters 6
Goal: Estimate 6

Properties:

e Unbiasedness: E(T) = 6
e Asymptotic unbiasedness: lim T (X, ...,X,) = 6 (weaker than unbiasedness)
n— oo

e f[fficiency, low mean square error MSE(T) = E((T — 6)?) = Var(T) + Bias(T)?

e  Consistency:

e Robustness: usually with respect to outliers
Plug-In
Idea: Estimate theoretical parameters by analogous quantities from the sample.
Simplest example: Estimate expectation E(X) by the sample arithmetic mean X n. Sometimes,
we have to solve an equation, i.e. write a parameter as a function of something we can esti-
mate from the sample. Example: Estimate 8 = 1/E(X) by T(Xy,...,X,) = 1/Xn.

e Simple method, often leads to reasonable estimators.
e Solution is usually not unique, as different sample quantities may correspond to the
parameter.
e Desirable properties of estimator not necessarily guaranteed.
e May occasionally give impossible values.
Note:

e The variance of a consistent estimator does not converge to zero if the sample size
goes to infinity > FALSE



Rebecca Nauli

QQ-Plot Maximum Likelihood Estimation
used to check whether two data sets have the same distribution Idea: Estimate the parameter by the value for which the sample is most typical, i.e. choose 8
Left skewed Right skewed to maximize
Upside down U-shape - below the curve U-shape = points lie above curve L(O) = Pg(Xy,...,Xp) (discrete case)
Plot1 Plot 2
A or
- /‘/ L(O) = fo(Xy,...,Xn) (continuous case).
,'/ 2
3 3 Usually simpler: maximize €(8) = log L(0).
§ 00 H .. . - ..
] 3, In the iid case, simplified by factorizing L, £ becomes a sum.
2 2 S . . . . . . .
£ £ Maximization sometimes possible by analytical solution, in more complex situation usually
w w
2~ . 2 solved numerically.
[ e Under weak conditions, maximum likelihood estimates are consistent, asymptotically most
T - - - =] efficient, asymptotically normal.
g 0 2 0 2
Theoretical Quantiles Theoretical Quantiles LOg -likelihood
Long-tailed (heavier tails) Short-tailed
Below on left and above on right Above on left and below on right MLE
Plots Plotd dlogis(), plogis(), qlogis(), rlogis()
T . e Example 1
0 — = — For m, we can just use
8 K é 1 ﬁj'phigi-u =Xy
3 " 3 0 Another possibility would be to use the median. For s, we get from
g E 2.2
] = s°m
o Var(X) = 3
40 2 t
e that
Z % B -3 > 5 3 13- Var(X)
Theoretical Quantiles Theoretical Quantiles 5= \/ T
library(car) s0 a plug-in estimate would be
qqPlot() . /3-82
: Splugin =\ —5
library(car) ‘ V2
qqPlot(tires§Profile A - tires$Profile B) where S? is the sample variance. Using this on our sample gives:
;;:i:i{i:iid) plug_in_estimates <- function(x) {
g 4 5 c(mhat = mean(x), shat = sqrt(3*var(x)/pi~2))
g }
« o plug_in_estimates(x)
g 2 | ## mhat shat
. ## 1.556956 2.399929
?A_ -1 3 °
T T T T T
-1.0 -0.5 0.0 0.5 1.0
norm quantiles
## [1] 5 3
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11h <- function(par, x) {
-sum(dlogis(x, location = par[1], scale = par[2], log = TRUE))
}

optim(par = plug_in_estimates(x), fn = 11lh, x = x, method = "BFGS")

## $par
## mhat shat
## 1.567601 2.512727

Example 2

Numerical Calculation of a Maximum Likelihood Estimate

Consider the continuous distribution with density:

&t. 1
fole) =57 0,

for 8 € (0, oo)

A sample of size 250 from this distribution (with unknown 8) is available here sample_dist rda

Calculate the Maximum Likelihood Estimate of # numerically using “optim()” with method equal to “BFGS™
Hint: Ignore possible warnings about generated NalNs

Enter the MLE of # with a precision of at least 3 decimal places.
# question 9 - version 2 ----
n = 230

m_true = 3
s_true =1

v <- rlogis(n = n, Tocation = m_true , scale = s_true)

#starting values estimates
sample_mean <- mean(y) # m as expected value from the exercise
sample_s <- sqrt(3)/pi*sd{y) #rearranging from variance from exercise

starting_value <- c(sample_mean,sample_s)
starting_value

minus_TTh <- functioni(par, y){
-sum({dlogis(x = vy, location = par[l], scale = par[2], Tog = TRUE))

-
J

optim(par = starting_value, fn = minus_11h, method = "BFGS", y = vy)

a) What is the Maximum Likelihood estimate?

m_est_mle <- mean(x)
mu_est_mle
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Example 3

Exercise 1: Maximum Likelihood Estimation

(3+3=6 Points)

Consider a continuous distribution with parameter # > (). The density is given by

on

2026~ (0 1>
folz) = ' .
0, otherwise

(0,00).

a) Write an R function 11h <- function(theta, x){...} that calculates the log-likelihood for
a sample and one parameter value #. The function should have the following two arguments:

argument theta: parameter value (scalar)
argument x: Values of the sample (vector)

Give the R function and the value of the log-likelihood for the sample 4 <-
c(5,4,3,2,5,4,2,6,2,1,1) and f = 0.2.

11h <- function(theta, x){sum(log( 2*theta2*x*exp(-(theta*x)"2) )) }

d <- ¢(5,4,3,2,5,4,2,6,2,1,1)
11h(theta = 0.2, x = d)
## [1] -22.46174

b) Using R, determine the Maximum Likelihood Estimate of f for the sample d <-

mi:

¥

op

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

c(5,4,3,2,5,4,2,6,2,1,1). Also give the R code.

nus_11lh <- function(theta, x) {
-11h(theta, x)

tim( par = 1,

fn = minus_11h,
method = 'BFGS',
= )

$par
[1] ©0.2793113

$value
[1] 20.47361

$counts
function gradient
20 7

$convergence

[1] ©

$message
NULL
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Bayes Estimators
Idea: Interpret parameter 6 as a random variable with a known distribution, the so-called
prior. This should reflect any previous knowledge on the parameter.
Calculate the posterior distribution, i.e. distribution of parameter given the data:

f Ky,..., X010) - g(6)
f(X1,.... Xn10) - g(6)db
The only case where we get probabilities for the parameter! Analytically tractable only for a
few special pairs of prior and data distribution. Usually solved numerically using Markov
Chain Monte Carlo.

h(@le,...,Xn) =

With some lengthy manipulations, we obtain:

h(u'|x1-.'-':xf1)_

e
L]
>
=
|
—_—
-
-
3
_.M'E
—
]
S

\/ 2wo?

with :
o =3
o - Ty
o= — =X+ — — o
2tz atz
0 0
and
2 1
a) 71 I I
ﬂz fTé

The posterior distribution is again a normal distribution, with parameters that
depend on

» i and a7 from the prior

» o (known) and

> the sample via x
Beta-distributed a = shapel, b = shape2
dbeta(), pbeta(), gbeta(), rbeta()
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Bayes estimators for the binomial: If X ~ Bin(n, p) with known n and
p ~ Beta(a, b) Fr’fﬂr‘/

(prior), then the posterior distribution of p given x is a Beta(a', b')-
distribution with parameters

/
a —a+x

b'=b+n— x.

The posterior expectation is then:

a _3+x_alb(a)i n (x)

a + b a+b+n a+b4+nla+b atb+nin/’

i.e. a weighted mean of the prior expectation and the proportion of successes
in the sample.

Example 1
n <- length(x)

muQ <- 9.8 # prior mean

sigmad <- 0.25 # prior sd

# Likelihood (depends on data, but not prior information)
sigma <- 0.2

likelihood <- function(mu) {

prod(dnerm(x, mean = mu, sd = sigma))

}
lines(xgrid, sapply(xgrid, likelihoed)/30, col = "red")
# Posterior (combines data and prior)
# posterior mu and sigma from the lectures
mal <= ((n / sigma ~ 2) * mu_sest_mle +
(1 / sigma0 ~ 2) # mu0) / (n / sigma ~ 2 + 1 / sigmaO ~ 2)
sigmal <- sqrt(l / (n / sigma ~ 2 + 1 / sigma0 ~ 2))

mul
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Confidence intervals: an interval of plausible values for one or more unknown parame-
ter is wanted. The interval should be as short as possible and
should contain the unknown parameter with high certainty. >
shorter intervals = more informative

gives not only a single point estimate but a whole range of values
of the parameter which would be compatible with the data, Cal-
culation of plausible values for parameters

Note:

e This is why all other factors being the same, a 95% confidence interval will be wider
than a 90% confidence interval. (more certainty = wider range)
e A 90% confidence interval is shorter than a 95% confidence interval calculated from
the same data - TRUE
Mathematically: given an iid sample X, ..., X, from a distribution with some parameter 6,
we want a lower bound 8,4,,¢, (X1, ..., X,) and an upper bound éupper(xl'---:Xn)r such
that for the interval
[élower (Xlw . -an)f éupper (Xl: e -'Xn)]
we have
P(glower(le .. -'Xn) =6 < éupper(Xl' .. -'Xn)) =z1-a
1 — ais called the coverage probability, or confidence level.

Confidence intervals for expectation p of normal distribution:

e o known:

e o unknown:

Length of CI:

o
2— = length
n q1—% g

> (2 id
n= length
(2 ¥ 0.02 / 0.001 * gnorm(0.95)) "2

2
= ql_%) for sample size

Also asymptotically valid for expectation of other distributions by using the Central Limit
Theorem.

rejection region:
acceptance region:

0.05% significance level, 95 quantile
>0.05% significance level
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Sample arithmetic mean X,

standardised rv

Sample standard deviation (SD)
Sample SD

sds <- apply(x, MARGIN = 1, FUN = sd)
Student's t-distribution

dt(), pt(, qt(, rtQ
dd <- seq(-7, 7, 0.1)

lines(dd, dt(dd, df = 2), col = "green")

df = degrees of freedom

Example 1
Confidence Intervals
Given below are three confidence intervals for a parameter of an unknown distribution, all based on the same sample
Match the intervals a,b,c to the 60%-, 95%- and 99% confidence levels.
Confidence interval a: [100, 386]
99% v
Confidence interval b: [196, 293]
60% v

Confidence interval c: [138, 350]

95%  |v

Example 2

¢) A company would like to collect the average time needed for a certain assembly step. For
this purpose, the times that 40 assemblers needed for this step were stopped. This resulted
in an arithmetic mean of 12.73 min and an estimated sample standard deviation of 2.06 min.
Caleulate an (approximate) 99% confidence interval for the mean time required.

We calculate the CI based on the ¢ distribution, i.e.
— '\IH
Tt —=ty 1:1-a/2|-
NG

Alternatively, the normal quantiles may also be used.

12.73 + c(-1,1) # 2.06 / sqrt(40) * qt(0.995, 39)

## [1] 11.84799 13.61201
12.73 + c(-1,1) * 2.06 / sqrt(40) * gnorm(0.995)

## [1] 11.89101 13.56899

Example 3
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Metal pin length

What is the average length of metal pins?

We want to estimate these with the arithmetic Mean. A sample of size 39 yields a mean length (arithmetic mean) of £ = 38.5mm.

Itis known from previous studies that the length of the metal pins is normally distributed and that the producing machine operates with a
known standard deviation of o = 1.6Gmm.

Answer the questions below:

a. Give the lower bound of the 85% confidence interval for the expected metal pin length. Do NOT solve this problem with a bootstrap

confidence interval. Give the result with at least 3 decimal places: | 37.998 v

b. What is the minimum size of a sample that the 95% confidence interval for the mean pencil length is at most half as wide:

156 v

c. Given the following confidence interval: [38.205 mm; 38.795 mm]. What is the confidence interval? Select the percentage: 75
v
# Given data
x_bar <- 38.5 # sample mean

sigma <- 1.6 # population standard deviation
n <- 3% # sample size

# part (a) - Lower bound of the 95% confidence interwval
# calculate margin of error for 95% confidence level without using z-score explicitly

margin_error_95 <- gnorm{(1 + 0.93) / Z) * (sigma / sqrt(n))

Tlower_bound_95 =- x_bar - margin_error_393

cat("Lower bound of the 95% confidence interval:”, round{lower_bound_95, 3), "mmyn")
# Part (b) - Minimum sample size Tor the confidence interval to be half as wide

# Calculate the new margin of error as half of the original margin of error
new_margin_error <- margin_error_95 / 2

# Calculate the required sample size
required_n <- ({gnorm{{1 + 0.95) / 2) * sigma) / new_margin_error) A 2
cat("Required sample size for half-width confidence interval:", ceiling(required_n), "“\n")

# pPart (c) - Confidence level for the interval [38.205, 38.795]

lower_bound <- 38.205
upper_bound <- 38.795

# calculate the margin of error for the given interval

given_margin_error <- (upper_bound - lower_bound) ,/ 2

# Find the confidence level by determining the probability that corresponds to the calculated z-score
z_given <- given_margin_error / (sigma / sqrt(n))

confidence_level =- 2 * pnorm(z_given) - 1

confidence_level_percentage <- confidence_Tevel * 100

cat("Confidence level for the interval [38.205, 38.7953]:", round(confidence_level_percentage, 2), "%\n")

Test used for Cl calculations
z.test()
t.test()
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Confidence Interval for Expected Length of Screws (Calculation in
R)

Given is a sample of screws produced on a particular day. The sample size is 148 and the screws’ lengths (in mm) are available in the file
screwlength.rda. Determine the 90% confidence interval of the expected screw length. In addition, calculate point estimates of the

expected value and the standard deviation of the screw length.
(Note: Do not use the bootstrap here!)

The length of the screws is given here: screwlength.rda

a. Enter the lower and upper bound of the confidence interval 90% confidence interval of the expected length. Give the result with at
least 3 decimal places.

Lower endpoint: ( 49.975 +  Upper endpoint: ( 50.037 v
—_ AN J

b. Enter your point estimates of the expected value and the standard deviation of the screw length. Give the result with at least 3
decimal places.

Estimator for expected value: | 50.006 ~ Estimated standard deviation: | 0.229 ‘J

t.test(screwlength, alternative = "two.sided”, conf.level = 0.90)
binom.test()
poisson.test()

b) In the last 5 years, in a certain area the number of earthquakes of a certain strengt was 55,
72, 64, 73, and 57, respectively. Calculate a 90% confidence interval for the mean number of
earthquakes per year.

x <- c(55, 72, 64, 73, 57)

poisson.test(x = sum(x), T = 5, cc
##

## Exact Poisson test

##

## data: sum(x) time base: 5

## number of events = 321, time base = 5, p-value < 2.2e-16
## alternative hypothesis: true event rate is not equal to 1
## 90 percent confidence interval:

## 58.42188 70.41467

## sample estimates:

## event rate

## 64.2
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Bootstrap Confidence Intervals
Bootstrap: We use the Bootstrap to obtain confidence intervals without distribution
assumption.
Idea: For a parameter estimated by a statistic T (X, ..., X;,) calculate T a large number of
times on bootstrap samples drawn with replacement from the original sample.
Use quantiles of the empirical distribution of T*(x'),...,T*(x®) as boundaries for the confi-
dence interval.
More refined versions are available, e.g. the Bca variant.
library(boot)
boot(data =, statistic =, R =)
library(boot)
statistic <- function(dat, ind) cor(dat[ind, "A"], dat[ind, "B"])

boot_res <- boot(data = spatial, statistic = statistic, R = 1000)
hist (boot_res$t)

R = number of bootstrap replicates

boot_res <- boot(galaxies, function(z, ind) median(z[ind]), R = 5000)
boot_res

boot.ci() “perc” = percentile, “bca” = adjusted bootstrap percentile (Bca)
method

boot.ci(boot_res, type = c("perc", "bca"))

Example 1

Question 3

ot yet Confidence interval of a quantile of repair times (bootstrap

answered

simulation with R)

Marked out of
2.00 In a car repair shop, a 90% confidence interval is to be calculated for the 80% quantile of the time required for a transmission repair. Only the last
o Fiag 55 repairs are available.
question The sample of repair times can be found here: repairtimes.rda
Set the RNG to 100 (“sef.seed(100)") before running your simulation. Use either “perc” or *bca”.
Report the lower and upper bounds of the 90% confidence interval of the 80% quantile of the duration of repair times using 100’000 bootstrap

samples. Give the result with at least 3 decimal places.

Lower bound: Upper bound:
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- # question 3 ---—-
set.seed(100) # to get the same result

Tibrary("boot™) # bootstrap Tibrary

# statistic - here BOth percentile - this changes depending
- Tstat =- function(x, ind) {
quantile(x[ind], 0.8)
#bootstrapping with 100°000 bootstrap samples
boot_res <- boot(data = repairtimes, statistic = Tstat, R = 100000)

# 90% CcI for B0% quantile
boot.ci(boot_res, conf = 0.90, type = c("perc”,"bca"))
Example 2

Exercise 5: Bootstrap
2+ 3 = 5 Points

In many technical and scientific applications, the coefficient of variation is of interest. It is defined
as the ratio of the standard deviation of a random variable divided by the expectation:

TX
E(X)

CVx =

This quantity is of course only defined for non-negative random variables (e.g., measurements of
length, weight ete.) and relates scatter to expectation.

The coefficient of variation can be estimated using

which corresponds to the ratio of sample standard deviation and arithmetic mean, except that we
divide by n and not by n — 1 when calculating the standard deviation.

Generate a sample as follows:

set.seed (20200123)
x <= rlnorm(20, meanlog = 1, sdlog = sqrt(leg(2)))

a) Calculate the estimator T of the coefficient of variation for this sample.

T_stat <- sqrt(sum((x-mean(x))"2)/length(x))/mean (x)
T_stat

## [1] 0.9313037
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b) Calculate a 90% bootstrap confidence interval for the coefficient of variation. Indicate how
you chose the number of bootstrap samples.

# BCa- and percentile interval using boot:
library(boot)
stat <- function(y, ind) {

sqrt (sum((y [ind]-mean(y[ind])})~2)/length(y[ind])) /mean(y[ind])
}

boot.res <- boot(data = x, statistic = stat, R = 1000)
boot.res

##

## ORDINARY NONPARAMETRIC BOOTSTRAP

##

##

## Call:

## boot(data = x, statistic = stat, R = 1000)

##

##

## Bootstrap Statistics :

## original bias std. error

## tlx 0.9313037 -0.03271554  0.1089688

boot.ci(boot.res, conf = 0.9, type = c("perc", "bca"))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

## Based on 1000 bootstrap replicates

##

## CALL :

## boot.ci(boot.out = boot.res, conf = 0.9, type = c("perc", "bca"))
##

## Intervals :

## Level Percentile BCa

## 90%  ( 0.7292, 1.0762 ) (0.7889, 1.1388 )

## Calculations and Intervals on Original Scale

# percentile interval without boot
stat2 <- function(y) {

sqrt (sum((y-mean(y)) ~2) /length(y)) /mean(y)
¥

boot.res2 <- replicate(1000, stat2(sample(x, size = length(x), replace = TRUE)))
quantile(boot.res2, probs = ¢(0.05, 0.95))

#i# 5% 95%
## 0.7395813 1.0675444
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Hypothesis testing: verify statements about unknown parameters, e.g. whether an ex-
pected value is greater than 0 or whether the expected value is
greater in one population than in another. > statistical signifi-
cance

General Terminology

Test, whether certain values of parameters are compatible with the data

Generic recipe:

e Determine the null hypothesis HO
e Determine the alternative hypothesis H1
e Determine the test statistic T and its distribution
e  (Optionally) determine rejection/acceptance region
e Observe the realized value of the test statistic
e  Calculate p-value
e Making a decision: reject HO if p-value < o or equivalently T takes a value in the rejec-
tion region.
Hy: Null hypothesis
H,: Alternative hypothesis

If p-value > @ > H, is not rejected
If p-value < @ 2> H, is rejected

a = 5% or 1% significance level
Note:

e A large sample size n helps, when an existing effect should be significant in a statistical
test. = correct

o Ifthe result of a test is not significant, one may conclude that it is statistically proven
that the effect is non-existent. 2 wrong

e 5000 independent tests are conducted at a small significance level of o = 0.71%. Hence,
we can conclude with great certainty that there is a real effect if at least one of the tests
gives a significant result. 2 wrong

e When performing a t-test at 5% significance level, how does the probability of a Type |
error change if the sample size is increased? = stays the same

e A p-value of 0.07 in a hypothesis test means that the probability of the null hypothesis
being true is only 1%. - FALSE

e You perform a t-test of at 5% level. If you do not reject the null, you proved that with
probability 95%, . HO :yu = 0 u = 0 2 FALSE
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Power:

power.t.test() 1 parameter can be unknown and is called as NULL
power.t.test(n = NULL, delta = 1, sd = 1, sig.level = 0.05, power = 0.99,
alternative="one.sided", type = "one.sample")

Note:

e Ifthe variance stays the same, increasing the sample size n increases the power of the
t-test
e Two-sided tests have a lower power than one-sided tests.

z-Test
to check whether the expectation p of a distribution is equal to a given value.
Assumption: variance o was known

X —pu X — o -
Z:fw:\/ﬁ.i‘mmm({]:l)
E T
library(BSDA)
z.test() inputs: sample, o, uy from Hy and H,
library(BSDA)

x <- rnorm(20, mean = 0.5, sd = 1)
z.test(x = x, sigma.x = 1,

alternative = "two.sided", conf.level = 0.95)
library(BSDA)
z.sum.test input: arithmetic mean & o
zsum.test(mean.x = mean(x), sigma.x = 1, n.x = length(x),
alternative = "two.sided", conf.level = 0.95)

t-Test
unknown o substitute for sample standard deviation - estimate of @

E:S":\/nilz{x“'_f)z

Test statistic T:  for normal distribution = t-distributed with n — 1 degrees of freedom.
For other distributions = approximately in so far as the CLT is applicable
the sample is not to small & the distribution is not too skewed or too
heavy-tailed

10
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X —
T — Hao

—_ = "-‘tn—l
[+

NG
t-distribution: somewhat wider than the normal distribution

The width of the region of acceptance now depends on the sample size. 2 The region of ac-
ceptance becomes narrower as the sample size increases.

library(BSDA)

t.test() Performs one and two sample t-tests on vectors of data.
t.test(fuel, mu = 8.2, alternative = "two.sided")
library(BSDA)

tsum.test() only if arithmetic mean, sample SD & the sample size
tsum.test(mean.x = 148, s.x = 3, n.x = 50, mu = 150,
alternative = "less")

pt() one-sided t-test, used when sample, test statistic t & a is known
pt(-2.3, df = 17)

Note: For a sample of size 10, the t-test should only be applied if the observations come from a
normal distribution. = Correct

Paired vs Unpaired
Paired: both observations were taken on the same experimental unit (or on very
similar units), Perform t-test on differences in pairs.

e  before and after receiving a treatment,
e responses of patient i to two different treatments
e eg. platelets accumulation in smokers with before & after measurements
e eg. 2 tire profiles breaking test on the same 10 vehicles
o eg. 15 seedlings growth height in nearly identical plants

library(BSDA)

ttest(x, y, paired = TRUE, ...) for paired test set paired to TRUE

t.test (os$Linux, os$Windows, paired = TRUE, mu = O,

alternative = "two.sided")
t.test (neck$Before, neck$After, paired = TRUE)
Unpaired: two samples from different populations, not have to have the same sam-
ple size,
e two groups with different conditions

e eg. two forms of iron preparation divided for two groups of mice
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library(BSDA)

ttest(x, y, paired = FALSE,...) for unpaired test set paired to FALSE
# Supply the samples as z and y
t.test(x = blood_pressure$bp_decrease[blood_pressure$group

"treatment"] ,

y = blood_pressure$bp_decrease[blood_pressure$group == "control"],
paired = FALSE, alternative = "greater")

t.test(Score ~ Treatment, data = case0101,
var.equal = FALSE, mu = 0, alternative = "two.sided")

Welch test
allows for different values of o in the two populations
Note: var.equal = FALSE is the Welch Test (does not assume that the variances are equal)

# use formula notation
# the = sample is factor level 1 (treatment), y is factor level 2 (control)
levels(blood_pressure$group)

## [1] "treatment" "control"

t.test(bp_decrease - group, data = blood_pressure,

alternative = "greater")
##
## Welch Two Sample t-test
##

## data: bp_decrease by group

## t = 1.6037, df = 15.591, p-value = 0.06442

## alternative hypothesis: true difference in means between group treatment and group c
## 95 percent confidence interval:

## -0.476678 Inf

## sample estimates:

## mean in group treatment mean in group control

## 5.0000000 -0.2727273

Note: if data is normally distributed use t-test if not you can use the Wilcoxon Rank-Sum Test
(check with qgplot)
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Binomial Test
binom.test() Performs an exact test of a simple null hypothesis about the probability of
success in a Bernoulli experiment.

known X, n, p (probability) or Cl level,, Hy & H;

binom.test(x = 15, n = 50, p = 1/2, alternative = "less")

gbinom(0.95, size = 20, prob = 0.5)

## [1] 14

sum(dbinom(14:20, size = 20, prob = 0.5))
## [1] 0.05765915

sum(dbinom(15:20, size = 20, prob = 0.5))

## [1] 0.02069473
Poisson Test
poisson.test() Performs an exact test of a simple null hypothesis about the rate parameter
in Poisson distribution, or for the ratio between two rate parameters.

load(file.path(baseDir, "insulate.RData"))
# Add up the flaws per vendor
counts <- tapply(insulate$flaws, insulate$supplier, sum)

# 5 poisson tests:

poistst <- function(x) poisson.test(x, T = 10, r = 7, alternative = "less")$p.value
pvals <- sapply(counts, poistst)

round(pvals, digits = 5)

Sign Test

e for the median of a distribution.

e based on the signs of X; — m,, where m, is the hypothetical median from H,.
SIGN.test() This function will test a hypothesis based on the sign test and reports line-
arly interpolated confidence intervals for one sample problems.

Wilcoxon Rank-Sum Test

e tis anonparametric counterpart to the unpaired two-sample t-test.
e Ranks are calculated for combined sample and added up for one of the samples.

wilcox.test(..., paired = FALSE) Performs one- and two-sample Wilcoxon tests on vectors

of data; the latter is also known as ‘Mann-Whitney' test.
wilcox.test(Sandl, Sand2, alternative = "two.sided")

##

## Wilcoxon rank sum exact test

##

## data: Sandl and Sand2

## W = 42, p-value = 0.005062

## alternative hypothesis: true location shift is not equal to 0

MSE NQ - HS24

Coin version
library(coin)
wilcox_test()

library(coin)
dat <- data.frame(wt = c(ext, int),
feed = factor(c(rep("ext", length(ext)),
rep("int", length(int))))

)
wilcox_test(wt ~ feed, data = dat,
distribution = "exact")
##
## Exact Wilcoxon-Mann-Whitney Test
##

## data: wt by feed (ext, int)
## Z = -3.1279, p-value = 0.0009101
## alternative hypothesis: true mu is not equal to O

Note: if data is normally distributed use t-test if not you can use the Wilcoxon Rank-Sum Test
(check with qgplot)
Wilcoxon Signed Rank Test

e (s a nonparametric counterpart to the paired two sample t-test
e Ranks of absolute values of differences are calculated and added up for positive sign.
wilcox.test(..., paired = TRUE)
wilcox.test(tires$Profile_A, tires$Profile_B, paired = TRUE)
##
## Wilcoxon signed rank exact test

##
## data: tires$Profile_A and tires$Profile B

Coin version
wilcoxsign_test()

library(coin)

wilcoxsign_test(tires$Profile_A ~ tires$Profile_B,

alternative = "two.sided",
distribution = "exact")
##
## Exact Wilcoxon-Pratt Signed-Rank Test
##

## data: y by x (pos, neg)

## stratified by block

#% Z = -2.2934, p-value = 0.01953

## alternative hypothesis: true mu is not equal to 0
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t-test for each possible pair:

pairwise.t.test()

Calculate pairwise comparisons between group levels with corrections for
multiple testing

pairwise.t.test(pulpfbright, pulpfoperator,

p.adjust.method = "none", pool.sd = F)

## Pairwise comparisons using t tests with non-pooled SD

##4

#4

## data:

##4

#4 a b
## b 0.5088 -

## c 0.1882 0
## d 0.1360 0
#i

pulp$bright and pulp$operator

.0055
.0028 0.6811

## P value adjustment method: none

Significant: Differences between B — C and B — D.

Bonferroni correction

pairwise.t.test(pulpfbright, pulpfoperator,

p-adjust.method = "bonf", pool.sd = F)

## Pairwise comparisons using t tests with non-pooled SD

##

##

## data:

##

## a b
#% b 1.000 -

## c 1.000 0.033

pulp$bright and pulp$operator

## d 0.816 0.017 1.000

##

## P value adjustment method: bonferroni

In this case, the

p.adjust()
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differences are still significant (but with higher p-values).

Given a set of p-values, returns p-values adjusted using one of several meth-
ods.

Chi-Square Test (x? — Test for Contingency Tables)

Test of Independence

Each cell contains the number of observations with the particular combination of values
given by row and column.

chisqg.test()

Example 1

pollutants_test <- chisq.test(pollutants)
pollutants_test

##

## Pearson's Chi-squared test
##

## data: pollutants

## X-squared = 125.01, df = 12, p-value < 2.2e-16

Example 2
Exercise 4: Tests and confidence intervals

(24 2+ 2 = 6 Points)

In the questions regarding hypothesis tests, give the null and alternative hypotheses, the test used,
the R code and the p-value and the test decision.

All questions are independent!

a) A survey among students in Zurich and Lausanne yielded the following distribution of

subjects:
Mathematics Engineering Chemistry Economics other Total
Zurich 95 300 160 250 320 1125
Lausanne 75 200 100 230 270 875
Total 170 500 260 480 590 2000

Use a suitable test at a significance level of 5% to check whether the distributions of subjects are
different between the students in both cities.
H0: Subject and city are independet or the distributions of the subject are the same for both cities.
We conduct a y2-test and get a p-value of 0.03752, so there is a significant difference.

tab<-rbind(c (95, 300,160,250,320),
¢(75,200,100,230,270))

chisq.test (tab)

#i#
##
##
#i#
#i#

Pearson's Chi-squared test

data: tab
X-squared = 10.179, df = 4, p-value = 0.03752

mat <- rbind(c(55, 95), c(36, 122))
chisq.test(mat)
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Test of Equal or Given Proportions

prop.test() can be used for testing the null that the proportions (probabilities
of success) in several groups are the same, or that they equal cer-
tain given values.)

Visualisations

boxplot()

uncoated <- c(120, 130, 150, 90, 100, 140)
coated <- c(180, 130, 120, 190, 220, 120)
boxplot (uncoated, coated)

o
N | -_—
o '
1
— 1
:
=
m —
©
[wn] '
q- — "
il
o
D —
- 1
| |
1 2
library(car)
qqPlot() or qqplot() > second not from car library
library(car)
qqPlot (coated)
o
<
o™
o
g |
o~
o
o 2 7
g 2
m
8 2 |
o
g -
& - 4¢3
- T
-1.0 -05 0.0 0.5 1.0
norm quantiles
## [1] 5 3
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hist()
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Repetition — Probability theory

e A random experiment is an experiment or a situation in which the result is not pre-

determined.

e A repetition does usually not yield the same result.

e There is exactly one outcome and the different outcomes are mutually exclusive.
Sample space: the set of all possible outcomes, usually denoted by the symbol Q
Events: subsets of Q
Random variable: a variable which can take different values by chance under certain

constant conditions. It is part of the sample space.
X:0->R
Discrete Case
Discrete variables: part of the random variables, countable, only N,
Examples: humans, vehicles, infections, defects (you cannot have
half a human, etc.)
Probability distribution  the distribution of a rv which indicated which values the rv takes
with which probability.
all random variables from X : x4, x5, X3, X4, ...
corresponding to realisations of X, py, p2, D3, P4, ---
distribution of all probabilities of all random variables in a sample
space. E.g. Normal distribution, binomial, etc.

Realizations:
Probabilities:
Probability function:

o NOTE: only for discrete rv! Otherwise use density function.

Continuous Case
Continuous variables: part of random variables, interval, possibly unbounded (+)
Examples: temperature, weight, length, etc.)
PDF: Probability density function, f(x) = probability function in dis-
crete case.
not possible to assign probabilities to single value but interval

(continuous variables).

1. f(x)=0,forallxeR
2. f is piecewise continuous
3. [% f(x)dx =1 > all probabilities are = 1

b
Pla<X< b) =f fx)dx

pi =p(x;) = P(X = x;)

Zpi=1
7

Probability function:

Probability of an event = 1 (ALWAYS!!)

MSE NQ - HS24

Distribution function

CDF: The cumulative distribution function (CDF) calculates the cumulative probability
for a given x-value. Use the CDF to determine the probability that a random observation
that is taken from the population will be less than or equal to a certain value.

F(x) =P(X <x)

FGO = ) p(@

CDF for discrete:

CDF for continuous:
X
F(X) =j f(z)dz

integrate()
Expected Value
Expected value: E(X) of a rv is what one obtains on average with an infinite num-

ber of realizations.

E(X) = Z’QP(X =x)= inp(xi) = inpi

A A L

E(X) for discrete rv:

E(X)for continous rv:

EX) = fmx-f(x)dx

—00

Rules for transformations:

1. Y=aX+b,witha,b €R
e EY)=E(@X+b)=a-EX)+b
2. E(X+2)=EX)+EQ2)
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Variance
Variance: Var(X) = o2 is a measure of dispersion of a random variable o discret
Var(X) for discrete rv with u = E(X): .Ic : ondingus
Var(x) = E(X = EQO?) = B(X = 1%) = ) (¢ = 17p(x)
- Notation Name d/c  Parameter E(X)  Var(X)
Bin(n, p) Binomial d neN, pe(0,1) np np(1 — p)
Var(X)for continous rv with u = E(X): Poisson() Poisson d A>0 )1‘ )1\
, , ® , Geom(p) Geom. d pe(0,1) =£ i
Var(X) = E((X — E()?) = E(X - w)?) = f - f@dx NBin(r,p)  Neg Bin. d  reNpe(01) o) s
m m m ntm—k
Simple: Var(X) = E(X?) — (E(X))* Hyp(m,n, k) ~ Hyperg. ~ d  mnkeN ‘; min “lm—” (1- ) oot
Discrete cases: Exp(A) Exp. ¢ A>0 X Az
' . b—a)?
E(X?) = 2 U([a, b]) Uniform c abeR a<b bi2 %)—
&) = in p(x) [ N(p,0?) Normal c HER, o>0 m o?
t .
Continous cases: o ik
o - MK
E(X?) = f x% - f(x)dx i
—oo Distributions
Linear Transformation | | | I | mﬁrﬂ | | | | | (—)l Bernoulli I
1. Y=aX+b,witha,b €R o Yy

e Var(Y) =Var(aX +b) = a? Var(X)
2. VarX+2)=EX)+EZ)+2Cov(X,2)

hylahpeumbc IS

H mial (—r“ Geometric
|. ....... I

N
Covariance L ative
Covariance: of two random variables is a measure of linear dependence and | 'rlll -
defined as follows: ‘ ‘ ‘ n:hlun «— > m"“ﬁwmhl
....... . [“]I LILF T TT ST e —
CovX,¥) = E((X = ECO)Y — E(Y)) T
If Cov(X,Z) = 0 (always the case when X & Z independent: H“"LW Normel l .

Var(X + Z) = Var(X) + Var(2) || [T—

N

Standard deviation
Standard deviation

. ||||
—> H:mm;r!d
|H|” I | ||]||||II|I'|||
i

_.||\H||\HfmIm;...:..__"
e

of X is the square root of the variance

sd, =+ (Var(X) = o

...ﬂﬂ' ||||.

Important Distributions -

Summary
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Bernoulli Distribution

rv can be two values

Probability of success:
Sample:

Expected value:

Variance:

Var[X] = E[X?] —E[X]*=0-p)*A-p)+ (A +p)?-p=p(1-p)=p-q

Standard deviation:

Binominal Distribution

Sample:

Expected value:

Variance:

o =V[X] = Var(z X)) = Z Var(x;)) =n-p(1—p)
i=1 i=1

Standard deviation:

X~Bernoulli(p)
PX=1)=p
or
PX=0)=1-p
P=PX=1)

0={0,1}

EX]=0-(1-p)+1:p=
E[X?]=12-P(X=1)=1-p

X ~B(n,p)
Pix =1 = () pa—pk,

Q0 ={0,1,2,...,n}(discrete)

n

g =5(X) =/npq

Symmetrie fiir p = 0.5 bei wachsenden p # 0.5 immer symmetrisch falls n- p(1 — p) > 10,

gilt Bin(n, p) als symmetrisch

rbinom()
gbinom()
dbinom()
pbinom()
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random deviates
quantile function
density function
distribution function

Poisson Distribution

Sample:

Expected value:
A= E[X]
Variance:
Var[X] =2
Standard deviation:

Geometric Distribution

Expected value:

Variance:

Standard deviation:

Expected value:

Variance:

X ~ Pois(1)
k —
POX = x) = A ex)]:!( )

Q0 ={0,1,2,...}(discrete)

for small A = stark rechtsschief

the larger 2 > symmetrie bei 1 > 10

SD[X] = /Var[X]

X ~ Ge(p)
Ex] =27
p
Var[X] = 1-p

SD[X] = JVar[X] = 1-p

Negative Binomial Distribution

X ~NB(r,p)

1-p)

EX)=r

r(1—p)

v ==
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Hypergeometrical Distribution

X~H(N,M,n
( y 3\] u N: Objekte Total
(k)'(n:k) M: Merkmale Total
PX =k =—"——"5—" N — M: Objekte anderer Sorte
()
Sample: ricklegen

n: gezogene Objekte ohne Zu-

Q={0,1, ..., N} (endlich)

Expected value:

Variance:

Standard deviation:

Exponential Distribution

X ~Exp(A)
Expected value:
1
E(X) = 7
Variance
1
Var(X) = =
pexp() use for CDF continuous
dexp()
rexp() use for CDF discrete
Uniform Distribution
X ~U(a,b)

Expected value:
1
EX) = 3 (a+b)
Variance:

1
Var(X) = E(b —a)?
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Normal Distribution

X ~N(ua?)
Expected value:
EX)=u
Variance:
Var(X) = o?
Standard deviation:
SDX)=o0
pnorm()
dnorm()
rnorm()
gnorm()
Bayes theorem/statistics
P(AlB) - P(Bl;q()B)P(A)

Law of total probability

If By, By, B3, ... is a partition of the sample space S, then for any event 4 we have
P(A) = Z P(ANB;) = Z P(A|B;) - P(B;),i = number of events
7 7
Conditional probability:
P(A) = P(A|B) - P(B) + P(A|B®) - P(B®)

Multiplication probability rule:
P(A n B) = P(A|B) - P(B)

Source for distributions: https://statproofbook.github.io/I/ToC#Normal%20distribution

Useful R functions
sapply()

apply(

lapply()

tapply()
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