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GSTAT Summary 
Inductive Statistics 

General procedure: Translate what is known about the phenomenon under investigation 

into a statistical model and the question of interest into a question about unknown parame-

ters of the model. 

 

Definitions 

Model: is an idealised picture of the population and also includes aspects 

of the data collection process. 

Parametric models: a specific family of distributions is assumed (normal, bino-

mial, ...). Only one or at most finitely many parameters are un-

known. 

Non-parametric models: are not models that have no unknown parameters, but the de-

termination of individual parameters does not uniquely define 

the distribution. One can estimate: 

• Expected value 

• Variance 

• Median 

• 75% quantile 

Without having to make a specific distribution assumption.  

Non-parametric models make fewer assumptions and are there-

fore more universally applicable. However, the accuracy of the re-

sults is often reduced. 

 

 

 

 

 

Terms: 

Realizations: e.g. the lifetime of a randomly selected component = realization 

of a rv X. 

Random variable (rv): A variable which can take different values by chance under cer-

tain constant condition is called random variable. 

iid: independent and identical distributed 

𝜇: mean 

𝜎:  standard deviation (SD) 

𝜎2: Variance (Var) 

 

Examples and Distributions 

• Machine producing screw → normal distribution 

• Fish in a lake (capture-recapture) → urn problem – hypergeometric distribution 

• Duration of components → exponential distribution 

Simulation 

replicate()  

function() {}    

Example 1 

 

Example 2 

 

Note: the difference between knowing the variance and estimating it is not so relevant in 

large samples but substantial in small samples. 
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Law of Large Numbers 

Law of Large Numbers  states that the arithmetic mean approaches the expected value 

(LLN)    with increasing n 

With  

𝑋𝑛
̅̅̅̅ =

1

𝑛
∑ 𝑋𝑖

𝑛

𝑖=1

 

𝐸(𝑋̅𝑛) = 𝜇 

𝑉𝑎𝑟(𝑋̅𝑛) =
𝜎2

𝑛
 

Weak LLN for any 𝜀 > 0 

lim
𝑛→∞

𝑃(|𝑋̅𝑛 − 𝜇| > 𝜀) = 0 

Central Limit Theorem (CLT) 

As n increases, the arithmetic mean of 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 behaves like a normally distributed 

random variable with expectation equal to the expectation of the 𝑋𝑖 and variance converg-

ing to zero. → stronger statement than LLN 

 

Consider a sequence 𝑋1, 𝑋2, . .. of independent identically distributed random variables with 

𝐸(𝑋𝑖)  =  µ and 𝑉𝑎𝑟(𝑋𝑖)  =  𝜎2 .  

Then:  

√𝑛 ∗ (𝑋𝑛
̅̅ ̅̅ ̅  −  µ)𝜎 ·∼  𝑁(0, 1)  

or  

𝑋𝑛  ·∼  𝑁  µ, 𝜎 2 𝑛 

Summary:  

• With increasing n, sum and arithmetic mean of iid rv’s behave – independently of the 

original distribution! – more and more like normally distributed random variables  

• How large n has to be for a good approximation does depend on the original distri-

bution of the Xi  

• Rule of thumb: n Ø 25 or n Ø 30 I The approximation is already good for small n, if 

the shape of the original distribution is already very similar to the normal distribution  

• Larger n required if distribution is strongly asymmetric or has heavy tails.  

• The approximation “in the middle” of the distribution is better than in the tails for an 

accurate approximation of extreme quantiles we need a larger n  

• There are also distributions that are so “wide” that the variance or even the expected 

value do not exist (e.g. Cauchy distribution) → CLT does not work! 

 

 

 

 

Parameter Estimation 

Point Estimation 

Point estimate: only a concrete best guess (single value) for one or more un-

known parameter is wanted. 

Estimate unknown parameters of distribution models for data 

 

Model: 𝑋1, 𝑋2, … 𝑋𝑛 drawn iid from some distribution with unknown parameters 𝜃 

Goal: Estimate 𝜃 

 

Properties: 

• Unbiasedness: 𝐸(𝑇) = 𝜃 

• Asymptotic unbiasedness: 𝑙𝑖𝑚
𝑛→ ∞

𝑇(𝑋1, … , 𝑋𝑛) = 𝜃  (𝑤𝑒𝑎𝑘𝑒𝑟 𝑡ℎ𝑎𝑛 𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑𝑛𝑒𝑠𝑠) 

• Efficiency, low mean square error 𝑴𝑺𝑬(𝑻) = 𝐸((𝑇 − 𝜃)2) = 𝑉𝑎𝑟(𝑇) + 𝐵𝑖𝑎𝑠(𝑇)2 

• Consistency:  

• Robustness: usually with respect to outliers 

Plug-In 

Idea: Estimate theoretical parameters by analogous quantities from the sample.  

Simplest example: Estimate expectation E(X) by the sample arithmetic mean X¯n. Sometimes, 

we have to solve an equation, i.e. write a parameter as a function of something we can esti-

mate from the sample. Example: Estimate 𝜃 =  1/𝐸(𝑋) 𝑏𝑦 𝑇(𝑋1, . . . , 𝑋𝑛)  =  1/𝑋¯𝑛.  

• Simple method, often leads to reasonable estimators.  

• Solution is usually not unique, as different sample quantities may correspond to the 

parameter.  

• Desirable properties of estimator not necessarily guaranteed.  

• May occasionally give impossible values.  

Note: 

• The variance of a consistent estimator does not converge to zero if the sample size 

goes to infinity → FALSE 
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QQ-Plot 

used to check whether two data sets have the same distribution 

Left skewed Right skewed 

Upside down U-shape → below the curve U-shape → points lie above curve 

  
Long-tailed (heavier tails) Short-tailed 

Below on left and above on right Above on left and below on right 

  
library(car) 

qqPlot() 

 

 

Maximum Likelihood Estimation 

Idea: Estimate the parameter by the value for which the sample is most typical, i.e. choose θ 

to maximize  

𝐿(𝜃)  =  𝑃𝜃(𝑋1, . . . , 𝑋𝑛)   (discrete case)  

or  

𝐿(𝜃)  =  𝑓𝜃(𝑋1, . . . , 𝑋𝑛)   (continuous case).  

 

Usually simpler: maximize ℓ(𝜃)  =  𝑙𝑜𝑔 𝐿(𝜃).  

In the iid case, simplified by factorizing 𝐿, ℓ becomes a sum.  

Maximization sometimes possible by analytical solution, in more complex situation usually 

solved numerically.  

Under weak conditions, maximum likelihood estimates are consistent, asymptotically most 

efficient, asymptotically normal. 

Log-likelihood 

 

MLE 

dlogis(), plogis(), qlogis(), rlogis() 

Example 1 
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Example 2 

 

 

 

 

 

Example 3 
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Bayes Estimators 

Idea: Interpret parameter 𝜃 as a random variable with a known distribution, the so-called 

prior. This should reflect any previous knowledge on the parameter.  

Calculate the posterior distribution, i.e. distribution of parameter given the data: 

ℎ(𝜃|𝑋1, . . . , 𝑋𝑛) =  
𝑓 (𝑋1, . . . , 𝑋𝑛|𝜃) · 𝑔(𝜃)

𝑓 (𝑋1, . . . , 𝑋𝑛|𝜃) ·  𝑔(𝜃)𝑑𝜃 
   

The only case where we get probabilities for the parameter! Analytically tractable only for a 

few special pairs of prior and data distribution. Usually solved numerically using Markov 

Chain Monte Carlo. 

 

Beta-distributed a = shape1, b = shape2 

dbeta(), pbeta(), qbeta(), rbeta() 

 

 

Example 1 
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Confidence Intervals 

Confidence intervals: an interval of plausible values for one or more unknown parame-

ter is wanted. The interval should be as short as possible and 

should contain the unknown parameter with high certainty. → 

shorter intervals = more informative 

gives not only a single point estimate but a whole range of values 

of the parameter which would be compatible with the data, Cal-

culation of plausible values for parameters 

Note:  

• This is why all other factors being the same, a 95% confidence interval will be wider 

than a 90% confidence interval. (more certainty = wider range) 

• A 90% confidence interval is shorter than a 95% confidence interval calculated from 

the same data → TRUE 

Mathematically: given an iid sample 𝑋1, . . . , 𝑋𝑛 from a distribution with some parameter 𝜃,  

we want a lower bound 𝜃𝑙𝑜𝑤𝑒𝑟(𝑋1, . . . , 𝑋𝑛) and an upper bound 𝜃𝑢𝑝𝑝𝑒𝑟(𝑋1, . . . , 𝑋𝑛), such  

that for the interval  

[𝜃𝑙𝑜𝑤𝑒𝑟(𝑋1, . . . , 𝑋𝑛), 𝜃𝑢𝑝𝑝𝑒𝑟(𝑋1, . . . , 𝑋𝑛)] 

we have 

𝑃(𝜃𝑙𝑜𝑤𝑒𝑟(𝑋1, . . . , 𝑋𝑛)  ≤  𝜃 ≤  𝜃𝑢𝑝𝑝𝑒𝑟(𝑋1, . . . , 𝑋𝑛))  ≥  1 − 𝛼 

1 −  𝛼 is called the coverage probability, or confidence level. 

 

Confidence intervals for 𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 µ 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛:  

• 𝜎 known:  

[𝑥̅  −
𝜎

√𝑛
 𝑞

1−
𝛼
2

 , 𝑥̅ +
𝜎

√𝑛
 𝑞

1−
𝛼
2

] 

• 𝜎 unknown:  

[𝑋̅𝑛  −
𝑆𝑛

√𝑛
  𝑡

𝑛−1;1−
𝛼
2

 , 𝑋𝑛
̅̅̅̅  +

𝑆𝑛

√𝑛
  𝑡

𝑛−1;1−
𝛼
2

] 

Length of CI: 

2
𝜎

√𝑛 
𝑞

1−
𝛼
2

= 𝑙𝑒𝑛𝑔𝑡ℎ 

⟺ 𝑛 ≥ (2
𝜎

𝑙𝑒𝑛𝑔𝑡ℎ
𝑞

1−
𝛼
2

)
2

 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

 

Also asymptotically valid for expectation of other distributions by using the Central Limit 

Theorem.  

rejection region:  0.05% significance level, 95 quantile 

acceptance region: >0.05% significance level 

Sample arithmetic mean 𝑿𝒏
̅̅ ̅̅  

𝑋𝑛
̅̅̅̅  ~𝑁 (𝜇,

𝜎2

𝑛
) 

standardised rv  

𝑍𝑛 = √𝑛
𝑋𝑛 − 𝜇

𝜎
⟺ 𝑍𝑛~𝑁(0,1) 

Sample standard deviation (SD) 

Sample SD 

 

Student’s t-distribution 

dt(), pt(), qt(), rt()  df = degrees of freedom 

 

 

Example 1 

 

Example 2 

 

 

Example 3 
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Test used for CI calculations 

z.test() 

t.test() 

 

 

binom.test() 

poisson.test() 

 

 

  



Rebecca Nauli  

MSE NQ - HS24  8 

Bootstrap Confidence Intervals 

Bootstrap:  We use the Bootstrap to obtain confidence intervals without distribution 

assumption.  

Idea: For a parameter estimated by a statistic 𝑇(𝑋1, … , 𝑋𝑛) calculate 𝑇 a large number of 

times on bootstrap samples drawn with replacement from the original sample.  

Use quantiles of the empirical distribution of 𝑇∗(𝑥1 ), . . . , 𝑇∗(𝑥𝐵) as boundaries for the confi-

dence interval.  

More refined versions are available, e.g. the Bca variant. 

library(boot) 

boot(data =, statistic = , R =) R = number of bootstrap replicates 

 

 

boot.ci() “perc” = percentile, “bca” = adjusted bootstrap percentile (Bca) 

method 

 

Example 1 

 

 

Example 2 
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Statistical Hypothesis Testing 

Hypothesis testing: verify statements about unknown parameters, e.g. whether an ex-

pected value is greater than 0 or whether the expected value is 

greater in one population than in another. → statistical signifi-

cance 

General Terminology 

Test, whether certain values of parameters are compatible with the data 

Generic recipe:  

• Determine the null hypothesis H0  

• Determine the alternative hypothesis H1  

• Determine the test statistic T and its distribution  

• (Optionally) determine rejection/acceptance region  

• Observe the realized value of the test statistic  

• Calculate p-value  

• Making a decision: reject H0 if p-value ≤ α or equivalently T takes a value in the rejec-

tion region. 

𝐻0: 𝑁𝑢𝑙𝑙 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 

𝐻1: 𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 

 

If p-value > 𝛼 → 𝐻0 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 

If p-value < 𝛼 → 𝐻0 𝑖𝑠 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 

𝛼 =  5% 𝑜𝑟 1% 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙 

Note:  

• A large sample size n helps, when an existing effect should be significant in a statistical 

test. → correct 

• If the result of a test is not significant, one may conclude that it is statistically proven 

that the effect is non-existent. → wrong 

• 5000 independent tests are conducted at a small significance level of α = 0.1%. Hence, 

we can conclude with great certainty that there is a real effect if at least one of the tests 

gives a significant result. → wrong 

• When performing a t-test at 5% significance level, how does the probability of a Type I 

error change if the sample size is increased? → stays the same 

• A p-value of 0.01 in a hypothesis test means that the probability of the null hypothesis 

being true is only 1%. → FALSE 

• You perform a t-test of at 5% level. If you do not reject the null, you proved that with 

probability 95%, . H0 : μ = 0 μ = 0 → FALSE 

 

Power:   

power.t.test() 1 parameter can be unknown and is called as NULL 

 

Note:  

• If the variance stays the same, increasing the sample size n increases the power of the 

t-test 

• Two-sided tests have a lower power than one-sided tests. 

One sample test 

z-Test 

to check whether the expectation µ of a distribution is equal to a given value. 

Assumption: variance 𝜎2 was known 

 

library(BSDA) 

z.test() inputs: 𝑠𝑎𝑚𝑝𝑙𝑒, 𝜎, 𝜇0 𝑓𝑟𝑜𝑚 𝐻0 𝑎𝑛𝑑 𝐻1 

 

library(BSDA) 

z.sum.test input: 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 & 𝜎 

 

t-Test 

unknown σ substitute for sample standard deviation → estimate of σ 

 

Test statistic 𝑇: for normal distribution → t-distributed with n − 1 degrees of freedom. 

For other distributions → approximately in so far as the CLT is applicable 

the sample is not to small & the distribution is not too skewed or too 

heavy-tailed 
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t-distribution: somewhat wider than the normal distribution 

The width of the region of acceptance now depends on the sample size. → The region of ac-

ceptance becomes narrower as the sample size increases. 

library(BSDA) 

t.test() Performs one and two sample t-tests on vectors of data. 

 

library(BSDA) 

tsum.test() only if arithmetic mean, sample SD & the sample size 

 

pt() one-sided t-test, used when sample, test statistic t & 𝛼 is known 

 

 

Note: For a sample of size 10, the t-test should only be applied if the observations come from a 

normal distribution. → Correct 

Two-sample Test 

Paired vs Unpaired 

Paired:   both observations were taken on the same experimental unit (or on very 

similar units), Perform t-test on differences in pairs. 

• before and after receiving a treatment,  

• responses of patient i to two different treatments 

• e.g. platelets accumulation in smokers with before & after measurements 

• e.g. 2 tire profiles breaking test on the same 10 vehicles 

• e.g. 15 seedlings growth height in nearly identical plants 

library(BSDA) 

t.test(x, y, paired = TRUE, …) for paired test set paired to TRUE 

 

 

Unpaired:  two samples from different populations, not have to have the same sam-

ple size,  

• two groups with different conditions 

• e.g. two forms of iron preparation divided for two groups of mice 

library(BSDA) 

t.test(x, y, paired = FALSE,…) for unpaired test set paired to FALSE 

 

 

Welch test 

allows for different values of σ in the two populations 

Note: var.equal = FALSE is the Welch Test (does not assume that the variances are equal) 

 

Note: if data is normally distributed use t-test if not you can use the Wilcoxon Rank-Sum Test 

(check with qqplot) 

  



Rebecca Nauli  

MSE NQ - HS24  12 

Other tests 

Binomial Test 

binom.test() Performs an exact test of a simple null hypothesis about the probability of 

success in a Bernoulli experiment. 

 known X, n, p (probability) or CI level,, 𝐻0 & 𝐻1 

 

 

Poisson Test 

poisson.test() Performs an exact test of a simple null hypothesis about the rate parameter 

in Poisson distribution, or for the ratio between two rate parameters. 

 

Nonparametric Tests 

Sign Test 

• for the median of a distribution.  

• based on the signs of 𝑋𝑖  −  𝑚0, where 𝑚0 is the hypothetical median from 𝐻0. 

SIGN.test() This function will test a hypothesis based on the sign test and reports line-

arly interpolated confidence intervals for one sample problems. 

Wilcoxon Rank-Sum Test 

• t is a nonparametric counterpart to the unpaired two-sample t-test.  

• Ranks are calculated for combined sample and added up for one of the samples. 

wilcox.test(…, paired = FALSE) Performs one- and two-sample Wilcoxon tests on vectors 

of data; the latter is also known as ‘Mann-Whitney’ test. 

 

Coin version 

library(coin) 

wilcox_test() 

 

Note: if data is normally distributed use t-test if not you can use the Wilcoxon Rank-Sum Test 

(check with qqplot) 

Wilcoxon Signed Rank Test 

• is a nonparametric counterpart to the paired two sample t-test 

• Ranks of absolute values of differences are calculated and added up for positive sign. 

wilcox.test(…, paired = TRUE) 

 

Coin version 

wilcoxsign_test() 
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Multiple Testing 

t-test for each possible pair: 

pairwise.t.test() Calculate pairwise comparisons between group levels with corrections for 

multiple testing 

  

Bonferroni correction 

 

p.adjust() Given a set of p-values, returns p-values adjusted using one of several meth-

ods. 

 

 

 

 

Chi-Square Test (𝒙𝟐 − 𝑻𝒆𝒔𝒕 𝒇𝒐𝒓 𝑪𝒐𝒏𝒕𝒊𝒏𝒈𝒆𝒏𝒄𝒚 𝑻𝒂𝒃𝒍𝒆𝒔) 

Test of Independence 

Each cell contains the number of observations with the particular combination of values 

given by row and column. 

chisq.test() 

Example 1 

 

Example 2 
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Test of Equal or Given Proportions 

prop.test()  can be used for testing the null that the proportions (probabilities 

of success) in several groups are the same, or that they equal cer-

tain given values.)  

Visualisations  

boxplot() 

 

library(car) 

qqPlot() or qqplot() → second not from car library 

 

hist() 
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Repetition – Probability theory 

Basics 

• A random experiment is an experiment or a situation in which the result is not pre-

determined. 

• A repetition does usually not yield the same result. 

• There is exactly one outcome and the different outcomes are mutually exclusive. 

Sample space:  the set of all possible outcomes, usually denoted by the symbol Ω 

Events:   subsets of Ω 

Random variable: a variable which can take different values by chance under certain 

constant conditions. It is part of the sample space. 

 𝑋 ∶ Ω → ℝ 

Discrete Case 

Discrete variables: part of the random variables, countable, only ℕ,  

 Examples: humans, vehicles, infections, defects (you cannot have 

half a human, etc.) 

Probability distribution the distribution of a rv which indicated which values the rv takes 

with which probability. 

Realizations: all random variables from 𝑋 ∶ 𝑥1, 𝑥2, 𝑥3, 𝑥4, … 

Probabilities: corresponding to realisations of X, 𝑝1, 𝑝2, 𝑝3, 𝑝4, … 

Probability function: distribution of all probabilities of all random variables in a sample 

space. E.g. Normal distribution, binomial, etc. 

• NOTE: only for discrete rv! Otherwise use density function. 

Probability function:  𝑝𝑖 = 𝑝(𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖) 

 

Probability of an event = 1 (ALWAYS!!) 

∑ 𝑝𝑖

𝑖

= 1 

 

 

 

 

 

 

 

 

 

 

 

Continuous Case 

Continuous variables: part of random variables, interval, possibly unbounded (±∞) 

 Examples: temperature, weight, length, etc.) 

PDF: Probability density function, 𝒇(𝒙) = probability function in dis-

crete case. 

not possible to assign probabilities to single value but interval 

(continuous variables). 

1. 𝑓(𝑥) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ 

2. 𝑓 is piecewise continuous 

3. ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
 → all probabilities are = 1 

𝑃(𝑎 < 𝑋 ≤  𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

Distribution function 

CDF:  The cumulative distribution function (CDF) calculates the cumulative probability 

for a given x-value. Use the CDF to determine the probability that a random observation 

that is taken from the population will be less than or equal to a certain value. 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) 

𝐶𝐷𝐹 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒:  

F(x) = ∑ p(z)

z≤x

 

𝐶𝐷𝐹 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠:  

F(X) = ∫ f(z)dz
x

−∞

 

integrate()  

Expected Value 

Expected value: 𝐸(𝑋) of a rv is what one obtains on average with an infinite num-

ber of realizations. 

𝑬(𝑿) 𝒇𝒐𝒓 𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆 𝑟𝑣:  

𝐸(𝑋) =  ∑ 𝑥𝑖𝑃(𝑋 = 𝑥𝑖) = ∑ 𝑥𝑖𝑝(𝑥𝑖)

𝑖

 

𝑖

= ∑ 𝑥𝑖𝑝𝑖

𝑖

 

𝑬(𝑿)𝒇𝒐𝒓 𝒄𝒐𝒏𝒕𝒊𝒏𝒐𝒖𝒔 𝑟𝑣:  

𝐸(𝑋) = ∫ 𝑥 ∙ 𝑓(𝑥)𝑑𝑥
∞

−∞

 

Rules for transformations: 

1. 𝑌 = 𝑎𝑋 + 𝑏 , 𝑤𝑖𝑡ℎ 𝑎, 𝑏 ∈ ℝ 

• 𝐸(𝑌) = 𝐸(𝑎𝑋 + 𝑏) = 𝑎 ∙ 𝐸(𝑋) + 𝑏 

2. 𝐸(𝑋 + 𝑍) = 𝐸(𝑋) + 𝐸(𝑍) 
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Variance 

Variance:  𝑉𝑎𝑟(𝑋) = 𝜎2 is a measure of dispersion of a random variable 

𝑽𝒂𝒓(𝑿) 𝒇𝒐𝒓 𝒅𝒊𝒔𝒄𝒓𝒆𝒕𝒆 𝑟𝑣 𝑤𝑖𝑡ℎ 𝜇 = 𝐸(𝑋): 

𝑉𝑎𝑟(𝑋) = 𝐸((𝑋 − 𝐸(𝑋)2) = 𝐸((𝑋 − 𝜇)2) = ∑(𝑥𝑖 − 𝜇)2𝑝(𝑥𝑖)

𝑖

 

 

𝑽𝒂𝒓(𝑿)𝒇𝒐𝒓 𝒄𝒐𝒏𝒕𝒊𝒏𝒐𝒖𝒔 𝑟𝑣 𝑤𝑖𝑡ℎ 𝜇 = 𝐸(𝑋): 

𝑉𝑎𝑟(𝑋) = 𝐸((𝑋 − 𝐸(𝑋)2) = 𝐸((𝑋 − 𝜇)2) = ∫ (𝑥 − 𝜇)2 ∙ 𝑓(𝑥)𝑑𝑥
∞

−∞

 

𝑆𝑖𝑚𝑝𝑙𝑒:  𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2
 

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐𝑎𝑠𝑒𝑠:  

𝐸(𝑋2) =  ∑ 𝑥𝑖
2𝑝(𝑥𝑖)

𝑖

 

𝐶𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑐𝑎𝑠𝑒𝑠:  

𝐸(𝑋2) =  ∫ 𝑥2 ∙ 𝑓(𝑥)𝑑𝑥
∞

−∞

 

 

Linear Transformation 

1. 𝑌 = 𝑎𝑋 + 𝑏 , 𝑤𝑖𝑡ℎ 𝑎, 𝑏 ∈ ℝ 

• 𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟(𝑎𝑋 + 𝑏) = 𝑎2 ∙ 𝑉𝑎𝑟(𝑋) 

2. 𝑉𝑎𝑟(𝑋 + 𝑍) = 𝐸(𝑋) + 𝐸(𝑍) + 2𝐶𝑜𝑣(𝑋, 𝑍) 

Covariance 

Covariance: of two random variables is a measure of linear dependence and 

defined as follows: 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸((𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌)) 

If 𝐶𝑜𝑣(𝑋, 𝑍) = 0 (always the case when X & Z independent: 

𝑉𝑎𝑟(𝑋 + 𝑍) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑍) 

Standard deviation 

Standard deviation of X is the square root of the variance 

𝑠𝑑𝑥 = √(𝑉𝑎𝑟(𝑋) = 𝜎 

 

 

 

 

 

 

Important Distributions - Summary 

 

 

Distributions 
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Bernoulli Distribution 

𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 

rv can be two values  

𝑃(𝑋 = 1) = 𝑝  

or 

𝑃(𝑋 = 0) = 1 − 𝑝  

Probability of success:  

𝑃 = 𝑃(𝑋 = 1) 

Sample:   

Ω = {0, 1} 

Expected value:    

𝐸[𝑋] = 0 ∙ (1 − 𝑝) + 1 ∙ 𝑝 = 𝑝 

𝐸[𝑋2] = 12 ∙ 𝑃(𝑋 = 1) = 1 ∙ 𝑝 = 𝑝 

Variance:     

𝑉𝑎𝑟[𝑋] = 𝐸[𝑋2] − 𝐸[𝑋]2 = (0 − 𝑝)2(1 − 𝑝) + (1 + 𝑝)2 ∙ 𝑝 = 𝑝(1 − 𝑝) = 𝑝 ∙ 𝑞 

Standard deviation: 

Binominal Distribution 

 𝑋 ~ 𝐵(𝑛, 𝑝) 

𝑃(𝑋 = 𝑘) = (
𝑛
𝑘

) 𝑝𝑘(1 − 𝑝)𝑛−𝑘 , 

Sample:    

Ω = {0, 1, 2, . . . , 𝑛}(𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) 

Expected value:  

𝜇 = 𝐸[𝑋] = 𝐸(∑ 𝑋𝑖) = ∑ 𝐸(𝑥𝑖) = ∑ 𝑝 = 𝑛 ∙ 𝑝

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

Variance:  

𝜎2 = 𝑉[𝑋] = 𝑉𝑎𝑟(∑ 𝑋𝑖) = ∑ 𝑉𝑎𝑟(𝑥𝑖) = 𝑛 ∙ 𝑝(1 − 𝑝)

𝑛

𝑖=1

𝑛

𝑖=1

 

Standard deviation:  

𝜎 = 𝑆(𝑋) = √𝑛𝑝𝑞 

Symmetrie für 𝑝 = 0.5 bei wachsenden 𝑝 ≠ 0.5 immer symmetrisch falls 𝑛 ∙ 𝑝(1 − 𝑝) > 10, 

gilt 𝐵𝑖𝑛(𝑛, 𝑝) als symmetrisch 

rbinom()   random deviates 

qbinom()   quantile function 

dbinom()   density function 

pbinom()   distribution function 

 

 

 

 

Poisson Distribution 

𝑋 ~ 𝑃𝑜𝑖𝑠(𝜆) 

𝑃(𝑋 = 𝑥) =
𝜆𝑘 exp(−𝜆)

𝑥!
 

Sample:  

Ω = {0, 1, 2, . . . }(𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒) 

Expected value:  

𝜆 = 𝐸[𝑋]  for small 𝜆 → stark rechtsschief 

Variance:  

𝑉𝑎𝑟[𝑋] = 𝜆 the larger 𝜆 → symmetrie bei 𝜆 > 10 

Standard deviation: 

𝑆𝐷[𝑋] =  √𝑉𝑎𝑟[𝑋] 

Geometric Distribution 

𝑋 ~ 𝐺𝑒(𝑝) 

Expected value: 

𝐸[𝑋] =
1 − 𝑝

𝑝
 

Variance: 

𝑉𝑎𝑟[𝑋] =
1 − 𝑝

𝑝2
 

Standard deviation:    

𝑆𝐷[𝑋] =  √𝑉𝑎𝑟[𝑋] =
√1 − 𝑝

𝑝
 

Negative Binomial Distribution 

𝑋 ~ 𝑁𝐵(𝑟, 𝑝) 

Expected value: 

𝐸(𝑋) = 𝑟
(1 − 𝑝)

𝑝
 

Variance: 

𝑉(𝑋) =
𝑟(1 − 𝑝)

𝑝2  
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Hypergeometrical Distribution 

 𝑋~𝐻(𝑁, 𝑀, 𝑛) 

𝑃 (𝑋 = 𝑘) =
(

𝑀
𝑘

) ∙ (
𝑁 − 𝑀
𝑛 − 𝑘

)

(
𝑁
𝑛

)
 

Sample:  

Ω = {0, 1, … , 𝑁} (𝑒𝑛𝑑𝑙𝑖𝑐ℎ) 

Expected value:  

𝜇 = 𝐸[𝑋] = 𝑛 ∙
𝑀

𝑁
 

Variance: 

𝜎2 = 𝑉(𝑥) = 𝑛 ∙
𝑀

𝑁
∙ (1 −

𝑀

𝑁
) ∙ (

𝑁 − 𝑛

𝑁 − 1
) 

Standard deviation:  

𝜎 = 𝑆(𝑋) = √𝑛 ∙
𝑀

𝑁
(1 −

𝑀

𝑁
) (

𝑁 − 𝑛

𝑁 − 1
) =  √𝑉(𝑋) 

Exponential Distribution 

𝑋 ~ 𝐸𝑥𝑝(𝜆) 

Expected value: 

𝐸(𝑋) =
1

𝜆
 

Variance 

𝑉𝑎𝑟(𝑋) =
1

𝜆2 

pexp() use for CDF continuous 

dexp()  

rexp() use for CDF discrete 

Uniform Distribution 

𝑋 ~ 𝑈(𝑎, 𝑏) 

Expected value: 

𝐸(𝑋) =
1

2
(𝑎 + 𝑏) 

Variance: 

𝑉𝑎𝑟(𝑋) =
1

12
(𝑏 − 𝑎)2 

 

 

 

Normal Distribution 

𝑋 ~ 𝑁(𝜇, 𝜎2) 

Expected value: 

𝐸(𝑋) = 𝜇 

Variance: 

𝑉𝑎𝑟(𝑋) = 𝜎2 

Standard deviation: 

𝑆𝐷(𝑋) = 𝜎 

pnorm()  

dnorm()  

rnorm()  

qnorm() 

 

Bayes theorem/statistics 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

𝑃(𝐵)
 

Law of total probability 

 

If 𝐵1, 𝐵2, 𝐵3, … is a partition of the sample space 𝑆, then for any event 𝐴 we have 

𝑃(𝐴) = ∑ 𝑃(𝐴 ∩ 𝐵𝑖)

𝑖

= ∑ 𝑃(𝐴|𝐵𝑖) ∙ 𝑃(𝐵𝑖)

𝑖

, 𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 

Conditional probability: 

𝑃(𝐴) = 𝑃(𝐴|𝐵) ∙ 𝑃(𝐵) + 𝑃(𝐴|𝐵𝐶) ∙ 𝑃(𝐵𝐶) 

Multiplication probability rule: 

𝑃(𝐴 ∩  𝐵)  =  𝑃(𝐴|𝐵)  ∙  𝑃(𝐵) 

 

Source for distributions: https://statproofbook.github.io/I/ToC#Normal%20distribution 

 

Useful R functions 

sapply() 

apply() 

lapply() 

tapply() 

 

 

𝑁: Objekte Total 

𝑀: Merkmale Total 

𝑁 − 𝑀: Objekte anderer Sorte 

𝑛: gezogene Objekte ohne Zu-

rücklegen 

https://statproofbook.github.io/I/ToC#Normal%20distribution

