
ASESummary ISTQB (beliebig lang)
19. Februar, 2024; rev. 1. April 2025

Linda Riesen (rieselin)

1 Fundamentals of Testing

Testing: not just verifying test obj. but also requirements

• Evaluating work products such as requirements, user stories, designs, and
code

• Causing failures and finding defects

• Ensuring required coverage of a test object

• Reducing the risk level of inadequate software quality

• Verifying whether specified requirements have been fulfilled

• Verifying that a test object complies with contractual, legal, and regulatory
requirements

• Providing information to stakeholders to allow them to make informed de-
cisions

• Building confidence in the quality of the test object

• Validating whether the test object is complete and works as expected by
the stakeholders

1.1 Quality Assurance (QA)

Preventative (Testing is corrective)

1.2 Testing Principles

1. Testing shows the presence, not the absence of defects

2. Exhaustive testing is impossible

3. Early testing saves time and money.

4. Defects cluster together.

5. Tests wear out.

6. Testing is context dependent

7. Absence-of-defects fallacy: software verification does not ensure successful
system

1.3 Test activities / tasks => all of these produce work products

this needs traceability

• Test planning: define test objective, select approach

• Test monitoring and test control: ongoing checking of all test activities
and compare actual progress against plan

• Test analysis: identify testable features, prioritize/define test conditions

• Test design: make test conditions into test cases (coverage)

• Test implementation: creating or acquiring the testware

• Test execution: run tests

• Test completion: usually occurs at project milestones

1.4 Roles in Testing

• a test management role

• a testing role

1



2

2 Testing Throughout the Software Development Life-
cycle

2.1 Software Development Lifecycle (SDLC)

Early testing (= shift left)
• acceptance test-driven development (ATDD)

– Derives tests from acceptance criteria as part of the system design
process

• behavior-driven development (BDD)
– Expresses the desired behavior of an application with test cases writ-
ten in a simple form of natural language, which is easy to understand
by stakeholders – usually using the Given/When/Then format

• domain-driven design (DDD)
• extreme programming (XP)
• feature-driven development (FDD)
• Kanban
• Lean IT
• Scrum
• test-driven development (TDD)

2.2 Test Levels

• Component testing (also known as unit testing)
• Component integration testing (also known as unit integration testing)
• System testing focuses (overall behavior and capabilities)
• System integration testing (test interfaces of system)
• Acceptance testing (validation and on demonstrating readiness for deploy-

ment)

2.3 Test Types

• Functional testing evaluates the functions that a component or system
should perform

• Non-functional testing “how well the system behaves”
– Performance efficiency
– Compatibility
– Usability (also known as interaction capability)
– Reliability
– Security
– Maintainability
– Portability (also known as flexibility)
– Safety

• Black-box / White-box Testing

• Confirmation testing confirms that an original defect has been successful-
ly fixed

• Regression testing confirms that no adverse consequences have been cau-
sed by a change

• Maintenance Testing: Test whole system after new releases/hot fixes

3 Static Testing

• dynamic testing: software needs to be executed for testing
– does not find defects directly but after failure

• static testing: software does not need to be executed for testing
– less effort (no test cases / tools required)
– usually done before dynamic testing
– can also be done on hard to execute / non executable code
– detect: specific code defects, evaluate maintainability and security
(e.g. spelling checkers and readability tools)



3

3.1 Review Process Activities

• Planning (scope of review, purpose, quality characteristics, focus area, ...)

• Review Initiation (access rights, all have the correct knowledge)

• Individual Review

• Communication and analysis

• Fixing and Reporting

3.2 Roles and responsibilities in reviews

• Manager: decides what is to be reviewed and provides resources, such as
staff and time for the review

• Author: creates and fixes the work product under review

• Moderator (also known as the facilitator): ensures the effective running
of review meetings, including mediation, time management, and a safe
review environment in which everyone can speak freely

• Scribe (also known as recorder): collates anomalies from reviewers and
records review information, such as decisions and new anomalies found
during the review meeting

• Reviewer: performs reviews. A reviewer may be someone working on the
project, a subject matter expert, or any other stakeholder

• Review leader: takes overall responsibility for the review such as deciding
who will be involved, and organizing when and where the review will take
place

3.3 Review Types

• Informal Review (no defined process)

• Walkthrough (performed by author)

• Technical Review (performed by technically qualified reviewer, led by mo-
derator)

• Inspection (most formal type)

3.4 Success Facotrs for Reviews

• Define clear objectives and measurable exit criteria (excluding participant
evaluation).

• Choose the appropriate review type based on objectives, work product,
participants, and context.

• Review small chunks to maintain reviewer concentration.

• Provide feedback to stakeholders and authors for improvement.

• Allow adequate preparation time for participants.

• Ensure management support for the review process.

• Integrate reviews into the organization’s culture for learning and improve-
ment.

• Provide training so participants understand their roles.

• Facilitate review meetings effectively.

4 Test Analysis and Design

4.1 Black-box test techniques (also known as specification-based
techniques)

4.1.1 Equivalence Partitioning (EP)

divides data into partitions based on expectation that all elements of a given
partition are processed the same way by test object => only 1 test/partition is
sufficient



4

4.1.2 Boundary Value Analysis (BVA)

black-box testing technique used to test the boundaries of input partitions, as
developers often make mistakes at these edges.

Abbildung 1: 2-Value BVA and 3-Value BVA

4.1.3 Decision Table Testing

testing the implementation of requirements that specify how different combi-
nations of conditions result in different outcomes

Table conditions

• “T” (true) means that the condition is satisfied

• “F” (false) means that the condition is not satisfied.

• –” means that the value of the condition is irrelevant for the action outcome

• “N/A” means that the condition is infeasible for a given rule

• For actions: “X” means that the action should occur

• For actions: “ ” means that the action should not occur

4.1.4 State Transition Testing

A test case based on a state diagram or state table is usually represented as a
sequence of events, which results in a sequence of state changes (and actions,
if needed).

• all states coverage covers the states

• valid transitions coverage covers single valid transitions

• all transitions coverage all transitions from state table/diagram

4.2 White-box test techniques (also known as structure-based tech-
niques)

4.2.1 Statement Testing

covers executable statements

4.2.2 Branch Testing

a transfer of control between two nodes in the control flow graph (possible
sequences of exec. code)

4.3 Experience-based test techniques

4.3.1 Error guessing

anticipate the occurrence of errors, defects, and failures (based on how app has
worked in past, typical types of errors of devs / similar apps)

4.3.2 Exploratory testing

tests are simultaneously designed, executed, and evaluated while the tester
learns about the test object

4.3.3 Checklist-based testing

a tester designs, implements, and executes tests to cover test conditions from a
checklist (not good repeatability as devs learn not to make same errors)



5

4.4 Collaboration-based Test Approaches

4.4.1 Collaborative User Story Writing

User Story Components

• Card – the medium describing a user story (e.g., an index card, an entry in
an electronic board)

• Conversation – explains how the software will be used (can be documented
or verbal)

• Confirmation – the acceptance criteria

• “As a [role], I want [goal to be accomplished], so that I can [resulting busi-
ness value for the role]”

Acceptance Criteria conditions that an implementation of the user storymust
meet to be accepted by stakeholders => can be test conditions too

4.4.2 Acceptance Test-driven Development (ATDD)

ATDD is a test-first approach, test cases are created by team members with
different perspectives

5 Managing the Test Activities

5.1 Test Planning

A test plan describes the test objectives, resources and processes for a test
project

• Context

• Assumptions and Constraints of test project

• Stakeholders

• Communication

• Risk Register

• Test approach

• Budget and Schedule

5.1.1 Entry and Exit Criteria

• should be defined for each test level

• Entry Criteria e.g. availability of resources / testware, init. quality

• Exit Criteria (= Definition of Done) e.g. measures of thoroughness, yes/no
criteria, time/budget

5.1.2 Estimation Techniques

• Estimation based on ratios (figures from previous projects / standards (like
dev:test = 3:2)

• Extrapolation

• Wideband Delphi (e.g. Planning Poker)

• Three-Point Estimation (most optimistic (a), most likely (m), most pessi-
mistic (b) => E = (a+ 4 ∗m+ b)/6

5.1.3 Test Case Prioritization

• Risk-based prioritization

• Coverage-based prioritization (most branches/statements/function cover-
ed in test = highest priority of test)

• Requirements-based prioritization (priorities of requirements)

5.1.4 Test Pyramid

Higher Layer: lower granularity, lower isolation, higher exec time (e.g. end-to-
end tests)



6

5.1.5 Testing Quadrants

• Quadrant Q1 (technology facing, support the team). This quadrant con-
tains component tests and component integration tests. These tests should
be automated and included in the CI process.

• Quadrant Q2 (business facing, support the team). This quadrant con-
tains functional tests, examples, user story tests, user experience prototy-
pes, API testing, and simulations. These tests check the acceptance criteria
and can be manual or automated.

• Quadrant Q3 (business facing, critique the product). This quadrant con-
tains exploratory testing, usability testing, user acceptance testing. These
tests are user-oriented and often manual.

• Quadrant Q4 (technology facing, critique the product). This quadrant
contains smoke tests and non-functional tests (except usability tests). The-
se tests are often automated.

5.2 Risk Management

5.2.1 Risk Analysis

risk identification and risk assessment

• Risk Likelihood

• Risk impact (harm)

Project and Product Risks

• Project

– Organizational Issues
– People issues
– Technical Issues
– Supplier Issues

• Product

– User dissatisfaction
– Loss of revenue, trust, reputation
– Damage to third parties
– high maintenance costs, overload of help desk
– criminal penalties / physical damage / injuries / death

5.2.2 Risk Control

risk mitigation and risk monitoring

5.3 Test Monitoring, Test Control and Test Completion

Test monitoring: gather info about testing (test progress, check exit criteria /
acceptance criteria)
Test Control: use monitoring to provide necessary corrective actions and gui-
dance

5.4 Configuration Management (CM)

a discipline for identifying, controlling, and tracking work products (test plans,
test strategies, test conditions, test cases, test scripts, test results, test logs, and
test reports) as configuration items.

5.5 Defect Management

create reports for findings (to provide resolvers sufficient info, means of tracking
quality, ideas of improvement)

6 Test Tools

nvm.
regression tests test analysis
Boundary Value Analysis (BVA) valid transitions coverage count test cases

how equivalence partitioning
three-point estimation know formula


	Fundamentals of Testing
	Testing Throughout the Software Development Lifecycle
	Static Testing
	Test Analysis and Design
	Managing the Test Activities
	Test Tools

