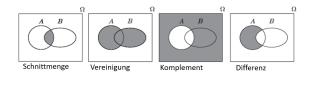


Einführung

Grundbegriffe	
Zufallsexperiment	Versuch, bzw. eine Situation, wo das Ergebnis nicht deterministisch vorbestimmt ist.
Ergebnis (Elementarereignis)	Ausgang eines Zufallsexperiments
Ergebnisraum Ω	Menge aller möglichen Ausgänge eines Zu- fallsexperiments
Mächtigkeit Ω	Anzahl Elemente im Ergebnisraum Ω
Ereignis A	Teilmenge mehrerer Ergebnisse

Mengenoperationen		
A^C	Gegenereignis / Komplement von A	
$A \cap B$	Schnittmenge	
$A \cup B$	Vereinigung	
$A \setminus B$	Differenz	
A und B disjunkt	falls $A \cap B = \emptyset$ (Schnittmenge ist leer)	



Axiome von Kolmogorov

Eine Wahrscheinlichkeit muss die folgenden 3 Axiome erfüllen:

Axiom 1: $P(A) \ge 0$ für jedes Ereignis (A)

Axiom 2: $P(\Omega) = 1$

Axiom 3: Falls $A \cap B = \emptyset$, dann gilt $P(A \cup B) = P(A) + P(B)$

Rechenregeln

 $P(A) = 1 - P(A^C)$

Wenn $A \subseteq B$, so gilt $P(A) \le P(B)$

Additionsatz: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

 $P(A \cup B) = P(A) + P(B)$, falls A und B disjunkt

Modell von Laplace

Annahme: Alle Elementarereignisse sind gleich wahrscheinlich

 $P(A) = \frac{|A|}{|\Omega|} = \frac{\text{Anzahl günstige Fälle}}{\text{Anzahl mögliche Fälle}}$

Kombinatorik

Gesucht ist die Anzahl Möglichkeiten eine Auswahl von k Objekten aus insgesamt n Objekten anzuordnen bzw. auszuwählen.

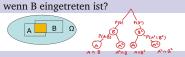
Kombinatorik				
	Ohne Wiederholung bzw. Zurücklegen	Mit Wiederholung bzw. Zurücklegen		
Auwahl: k = n Reihenfolge wichtig	Permutation ohne Wiederholung $z = n!$	Permutation mit Wiederholung $z = \frac{n!}{n_1! \dots n_s!}$		
Auwahl: k Reihenfolge wichtig	geordnete Stichprobe ohne Zurücklegen (Es gilt: $k < n$) $z = \frac{n!}{(n-k)!}$	geordnete Stichprobe mit Zurücklegen (k beliebig) $z = n^k$		
Auwahl: k Reihenfolge unwichtig	ungeordnete Stichprobe ohne Zurücklegen (Es gilt: k < n) $z = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$ nCr	ungeordnete Stichprobe mit Zurücklegen (k beliebig) $z = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!\cdot(n-1)!}$		

R: Fakultät n! = factorial(n) und Binomialkoeffizient $\binom{n}{k} = \text{choose}(n,k)$

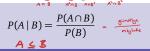
Bedingte Wahrscheinlichkeit

Definition

Wie gross ist die Wahrscheinlichkeit von A, Frage:



Wahrscheinlichkeit von A gegeben B:



Rechenregeln

Es gelten die Regeln für Wahrscheinlichkeiten:

Bsp: $P(A^C | B) = 1 - P(A | B)$

Achtung: $P(A \mid B) \neq 1 - P(A \mid B^C)$

 $P(A \cap B) = P(A \mid B) \cdot P(B) = P(B \mid A) \cdot P(A)$

Satz der totalen Wahrscheinlichkeit

Annahme B_1, B_2, \ldots, B_k paarweise disjukt und $B_1 \cup B_2 \cup \ldots \cup B_k = \Omega$

$$P(A) = \sum_{i=1}^{k} P(A \mid B_i) \cdot P(B_i)$$

Satz von Bayes

Die bedingte Wahrscheinlichkeit umkehren:

$$P(B \mid A) = \frac{P(A \mid B) \cdot P(B)}{P(A)}$$

$$P(A) = P(A \mid B) \cdot P(B) + P(A \mid B^{c}) \cdot P(B^{c})$$
Verknüft mit dem Satz der totalen Wahrscheinlichkeit:

$$P(B_i | A) = \frac{P(A | B_i) \cdot P(B_i)}{\sum_{j=1}^{k} P(A | B_j) \cdot P(B_j)}$$

Unabhängigkeit

stockastish make äyig -> Korrelation =0, abor nicht ungehelt!

Definitionen

Zwei Ereignisse A und B heissen stochastisch unabhängig, falls

$$P(A \cap B) = P(A) \cdot P(B)$$

Oder mittels bedingter Wahrscheinlichkeit

$$P(A|B) = P(A)$$
 $P(B|A) = P(B)$

or word B leaf deiren Erfluss auf A

Ereignisbäume

Mit dem Ergebnisbaum können mehrstufige Zufallsexperimente dargestellt werden. Jede Kante von der Wurzel bis zu einem Endknoten entspricht einem Elementarereignis

Rechenregeln

Wahrscheinlichkeit an den Endknoten: Multiplikation der W'keiten entlang des Pfades (Produktregel).

Endwahrscheinlichkeiten aller Blätter addieren sich zu 1

Wahrscheinlichkeit eines Ereignisses welches durch mehrere Pfade beschrieben ist, ist gleich der Summe der einzelnen Blätter (Summenregel)

Beispiel: 4-facher Münzwurf

$$0.5 \quad Z \quad 0.5 \quad$$

P(Erste 3 Würfe Z) = P(ZZZZ) + P(ZZZK) = 0.0625 + 0.0625

Zusammenfassung WAHR

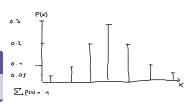
Verteilungen und Asymptotik

Verteilungen

Das Ergebnis eines Zufallsexperiments soll durch eine einzelne Zahl beschrieben werden. Hierfür haben wir Zufallsvariablen eingeführt:

Definition

Eine **Zufallsvariable** X ist eine Funktion $X : \Omega \rightarrow \mathbb{R}$. Sie ordnet jedem Ergebnis eines Zufallsexperiments einen Wert zu.



Diskret und Stetig		
	Diskrete Zufallsvariable	Stetige Zufallsvariable
Wertebereich	endlich oder unendlich abzählbar viele Werte an	kann jeden beliebigen Wert eines Intervalls an-
	$W = \{x_1, x_2, \ldots\}$	nehmen
Wahrscheinlichkeitsverteilung Dichte	Zu jedem möglichen Wert x_i gibt die Funktion die entsprechende Wahrscheinlichkeit p_i an: $P(X = x_i) = p_i$ Es gilt: $\sum_i p_i = 1$	Funtion $f(x) \ge 0$ mit $\int_{-\infty}^{\infty} f(x)dx = 1$ Achtung: $f(x)$ gibt keine W'keiten an, $f(x) > 1$ möglich
Kumulative Verteilungsfunktion	$F(x) = P(X \le x) = \sum_{x_i \le x} p_i$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du = \left[F(u) \right]_{-\infty}^{x}$
Wahrscheinlichkeiten	$P(X=x_k)=p_k$	$P(X \in [a,b]) = \int_a^b f(u)du = F(b) - F(a)$
Erwartungswert (Lagemass, was man "im Schnitt" bei unendlich vielen Realisierungen von X erhält)	$E(X) = \sum_{i=1}^{\infty} x_i P(X = x_i) = \sum_{i=1}^{\infty} x_i p_i$	$E(X) = \int \frac{xf(x)dx}{x + x + x + x + x + x + x + x + x + x +$
Varianz (Streuungsmass, "Breite" der Verteilung)	$Var(X) = E[(X - E[X])^2] = \sum_{i=1}^{\infty} (x_i - E[X])^2 p_i$	$Var(X) = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$

Transformationen Delte funktion: $f_x(x) = F_x'(x)$

Gegeben: Zufallsvariable X mit Verteilungsfunktion $F_X(x) = P(X \le x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(x) dx$ Gesucht: Verteilung der Zufallsvariable $Y = g(X) = X^{-1} \implies g(x) = x^{-1}$ Transformationsfunktion g(x) = f(x)

Transformationsregeln

Wenn g streng monoton abnehmend (d.h. $u > v \Rightarrow g(u) < g(v)$). dann gilt:

$$F_Y(y) = 1 - F_X(g^{-1}(y))$$

Wenn g streng monoton **zunehmend** (d.h. $u > v \Rightarrow g(u) > g(v)$), dann gilt:

$$F_Y(y) = F_X(g^{-1}(y))$$

$$F_{\mathcal{J}}(y) = \int_{\mathcal{F}(y)}^{\mathfrak{J}} J_{\mathfrak{J}}$$

Transformation der Dichte

(egal, ob g monoton steigend oder fallend):

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|} = f_X(g^{-1}(y)) \cdot |\frac{d}{dy}g^{-1}(y)|$$

Standardisierung: Transformiert man X mit der linearen Transformationsfunktion $g(x) = \frac{x-\mu}{\sigma}$ erhält man solch eine Zufallsvariable Z mit E(Z) = 0 und Var(Z) = 1.

Rechenregeln Erwartungswert und Varianz

 $E(aX + b) = a \cdot E(X) + b$ $E(2 \cdot X) = 2 \cdot M$ E(X+Y) = E(X) + E(Y) $Var(\mathbf{a}X + b) = \mathbf{a}^2 \cdot Var(X)$ $Var(2 \cdot X_i) = 2^2 \cdot \delta^2$ $Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$ Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Falls X und Y unabhängig, dann ist Cov(X, Y) = 0

Summe von Zufallsvariablen

Summe von Zufallsvariablen

Die Summe S von unabhängigen Zufallsvariable $X_1, X_2, ... X_n$ kann in folgenden Fällen direkt bestimmt werden:

 $X_1, X_2, \dots X_n$ sind normal verteilt

 $\Rightarrow S \sim \mathcal{N}(\mu_{x1} + \mu_{x2} + \dots + \mu_{xn}, \sigma_{x1}^2 + \sigma_{x2}^2 + \dots + \sigma_{xn}^2)$

 $X_1, X_2, \dots X_n$ sind poisson-verteilt \Rightarrow S \sim Pois($\lambda_{x1} + \lambda_{x2} + \cdots + \lambda_{xn}$)

 $X_1, X_2, \dots X_n$ sind binomial verteilt mit gleichem p

 $\Rightarrow S \sim \text{Bin}(n_{x1} + n_{x2} + \dots + n_{xn}, p)$

 $X_1, X_2, \dots X_n$ sind exponential verteilt mit gleichem λ $\Rightarrow S \sim G(n, \lambda)$

Grenzwertsätze

Die nachfolgenden Gesetze gelten für Zufallsvariablen: X_1, X_2, \dots, X_n unabhängig mit $E(X_i) = \mu$ und $Var(X_i) = \sigma^2$ für alle i

\sqrt{n} Gesetz

Die Standardabweichung des Mittelwerts nimmt mit $1/\sqrt{n}$ ab:

$$Var\left(\overline{X}_n\right) = Var\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{\sigma^2}{n}$$

Gesetz der grossen Zahlen

Das arithmetische Mittel nähert sich mit wachsender Stichprobengrösse (n) dem Erwartungswert: konvergiert zu pu

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mu$$

Zentraler Grenzwertsatz (ZGWS) $\sim 10^{-10}$ n $\sim 30^{-10}$

Die Summe oder der Mittelwert der Zufallsvariablen X_i ist approximativ normalverteilt: (identical verteilt, unabhangi)

Milel:
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\cdot}{\sim} \mathcal{N}\left(\mu, \frac{\sigma^2}{\underline{n}}\right)$$

Some: bzw.
$$S_n = \sum_{i=1}^n X_i \sim \mathcal{N}(\underline{n\mu}, \underline{n\sigma}^2)$$

Beispiel: Ladegewicht eines Lieferwagens

Der Lieferwagen wird mit 146 Kartoffelsäcken (erwartetes Gewicht 10.25 kg und Varianz 1/12) beladen. Wie gross ist die

Wahrscheinlichkeit, dass beim Beladen eines Lieferwagens mit 146 Säcken das zulässige Ladegewicht von 1500 kg überschritten wird?

Gesamtmenge auf Lieferwagen: $S_{146} = \sum_{i=1}^{146} X_i$ wobei $X_i = \text{i-ter}$ Kartoffelsack mit $E(X_i) = 10.25$ und $Var(X_i) = 1/12$. Wegen ZGWS ergibt sich für S_{146} die folgende approximative

Verteilung: $S_{146} \sim \mathcal{N}(146 \cdot 10.25, 146 \cdot 1/12)$

Damit lässt sich dann die Wahrscheinlichkeit berechnen:

 $P(S_{146} > 1500) = 1 - P(S_{146} \le 1500)$

= 1 - pnorm(1500, mean=146*10.25, sd=sqrt(146/12))

Diskrete Verteilungen

Disktrete Verteilungen					
Verteilung	W'keitsfunktion P(X=x)	Wertebereich	R(= d/p/q/r)	Erwartungswert und Varianz	Anwendung
Diskrete Gleichverteilung	$P(X=x_i)=p$	$\{x_1,,x_k\}$	<pre>werte <- c(x1,x2, xk) sample(werte, size = 1)</pre>	$E(X) = \sum_{i} x_{i} p$ $Var(X) = \sum_{i=1} (x_{i} - E[X])^{2} p$	Alle Ereignisse sind gleich wahrscheinlich. Bsp: Würfeln
Bernoulli X ∼ Bernoulli(p)	P(X = 1) = pP(X = 0) = 1 - p	{0,1}	<pre>sample(0:1, size=1, probs = c(1-p, p)</pre>	E(X) = p $Var(X) = p(1-p)$	Indikator, ob ein Ereignis eintritt. Bsp: Münzwurf, Würfeln einer 6
Binomial $X \sim Binom(n,p)$	$P(X=k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$	$\{0,1,\ldots,n\}$	binom(, size=n, prob=p)	E(X) = np $Var(X) = np(1-p)$	Anzahl Erfolge in <mark>n unabhängigen</mark> Bernoulli-Versuchen. Bsp: Anzahl Studenten, die Prüfung bestehen
Poisson $X \sim Pois(\lambda)$	$P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}$	{0,1,,∞}	pois(, lambda = λ)	$E(X) = \lambda$ $Var(X) = \lambda$	Anzahl Ereignisse k mit konstanter Eintre- ffrate λ. "ber & citrum, an eine Ort. Bsp: Anzahl Kunden am Postschalter pro Stunde
Geometrisch $X \sim \text{Geom}(p)$	$P(X=k) = p(1-p)^k$	{0,1,,∞}	geom(, prob = p)	$E(X) = (1-p)/p Var(X) = (1-p)/p^2$	Anzahl Misserfolge k bis der erste Erfolg auftritt. Bsp: Anzahl Fehlwürfe, bis man das Haus verlassen bei Eile mit Weile kann
Negativ Binomial X ∼ NBinom(r,p)	$P(X=k) = {\binom{k+r-1}{k}} p^r (1-p)^k$	{0,1,,∞}	nbinom(, size=r, prob=p)	$E(X) = r \cdot (1-p)/p$ $Var(X) = r \cdot (1-p)/p^{2}$	Anzahl Misserfolge bis zum r-ten Erfolg. Bsp: Anzahl erfolgloser Angelversuche bis man 2 Fische gefangen hat
Hypergeometrisch $X \sim \text{Hyp}(m, n, k)$	$P(X = j) = \frac{\binom{m}{j} \binom{n}{k-j}}{\binom{n+m}{k}}$	$\{0,1,\ldots,min(k,m)\}$	hyper(, m=m, n=n , k=k)	$E(X) = \frac{km}{(m+n)}$ $Var(X) = k \cdot \left(\frac{m}{m+n}\right) \cdot \left(1 - \frac{m}{m+n}\right) \cdot \left(\frac{n+m-k}{m+n-1}\right)$	Anzahl Erfolge j in einer Stichprobe der Grösse k bei einer Grundgesamtheit von m (Erfolgselemente) und n (Nicht-Erfolgen). Bsp: Anzahl defekter Schrauben in einer Stichprobe use bioowial, we mit veränden Mahred ein in Abert Green einer Stichen einer Sti

Wahrsheinlichteit (Ziehen, ohne zurüch legen)

Stetige Verteilungen

Stetige Verteilu	ngen			
Verteilung	Dichte f(x)	Verteilung F(X)	Kennzahlen und Zufallszahlen	Anwendung
Uniform $X \sim \text{Unif}([a, b])$	$f(x) = \begin{cases} 0 & \text{falls } x < a \\ 1/(b-a) & \text{falls } a \le x \le b \\ 0 & \text{falls } x > b \end{cases}$ R: dunif(x, min=a, max=b)	$F(x) = \begin{cases} 0 & \text{falls } x < a \\ \frac{x-a}{b-a} & \text{falls } a \le x \le b \\ 1 & \text{falls } x > b \end{cases}$ R: punif(q, min=a, max=b)	$E(X) = (a+b)/2$ $Var(X) = (b-a)^2/12$ Quantile: R: qunif(p, min=a, max=b) Zufallszahlen: R: runif(n, min=a, max=b)	Wenn alle Werte in einem Bereich gleich wahrscheinlich sind. Bsp: Wartezeit auf Bus, der exakt alle 8 Minuten fährt
Exponential $X \sim \text{Exp}(\lambda)$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{falls } x \ge 0 \\ 0 & \text{falls } x < 0 \end{cases}$ R: dexp(x, rate = \lambda)	$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{falls } x \ge 0 \\ 0 & \text{falls } x < 0 \end{cases}$ R: pexp(q, rate = \lambda) $L = \begin{cases} \frac{1}{1 + e^{-\lambda x}} & \text{falls } x \ge 0 \\ 0 & \text{falls } x < 0 \end{cases}$ When $E(x) = 1000 \Rightarrow L = \frac{1}{100}$	$E(X) = \frac{1}{\lambda}$ $Var(X) = \frac{1}{\lambda^2}$ Quantile: R: qexp(p, rate = \lambda) Zufallszahlen: R: rexp(n, rate = \lambda)	Dauer von zufälligen Zeitintervallen (zwischen 2 Poisson-Ereignissen) Besonderheit: Gedächtnislosigkeit, d.h. $P(X > s + t \mid X > s) = P(X > t)$ Lebendeuer Banteik (Ausfallunte konsturt) Bsp: Wartezeit für Kunden, zuit zwischen Ann fen Cakeent
Weibull $X \sim \text{Weibull}(\beta, \lambda)$	$f(x) = \begin{cases} \lambda \beta (\lambda x)^{(\beta - 1)} e^{-(\lambda x)^{\beta}} & \text{falls } x \ge 0 \\ 0 & \text{falls } x < 0 \end{cases}$ R: dweibull(x, shape=\beta, scale=1/\lambda)	$F(x) = \begin{cases} 1 - e^{-(\lambda x)^{\beta}} & \text{falls } x \ge 0 \\ 0 & \text{falls } x < 0 \end{cases}$ R: pweibull (q, shape=\beta, scale=1/\lambda) Tate = \lambda \beta = \text{Fermionic.}	$E(X) = \frac{1}{\lambda}\Gamma(1+1/\beta)$ $Var(X) = \frac{1}{\lambda^2}[\Gamma(1+2/\beta) - \Gamma^2(1+1/\beta)]$ Quantile: R: qweibull(p, shape=\beta, scale=1/\lambda) Zufallszahlen: R: rweibull(n, shape=\beta, scale=1/\lambda) $\frac{1}{\lambda} = \frac{\Gamma(1+1/\beta)}{E(x)}$	Dauer von zufälligen Zeitintervallen mit Berücksichtigung der Lebensphase (β < 1 Fehlerrate abnehmend, β = 1 Fehlerrate konstant und β > 1 Fehlerrate zunehmend. Bsp: Lebensdauer von Bauteilen und elektrischen Komponenten (Auflichte zucht kommutagt)
Gamma $X \sim G(k, \lambda)$	$f(x) = \begin{cases} e^{-\lambda x} \cdot x^{k-1} \cdot \frac{\lambda^k}{\Gamma(k)} & \text{falls } x \ge 0 \\ 0 & \text{falls } x < 0 \end{cases}$ R: dgamma(x, shape=k, rate=\lambda)	$F(x) = \int_{0}^{x} e^{-\lambda z} \cdot z^{k-1} \cdot \frac{\lambda^{k}}{\Gamma(k)} dz$ (keine geschlossene Form möglich) Shape = Anzahl exp. verleifte Erignise R: pgamma (q, shape=k, rate= λ) rate = λ Ext. von einem Ereignis	$E(X) = \frac{k}{\lambda}$ $Var(X) = \frac{k}{\lambda^2}$ Quantile: R: qgamma(p, shape=k, rate=\lambda) Zufallszahlen: R: rgamma(n, shape=k, rate=\lambda)	Summe von exponentialverteilten Zufallsvariablen k-fade Wielerholung von exp. Exignister Bsp: Wartezeit an einer Schalterschlange, Kosten X: ~ Exp(1)
Normal $X \sim \mathcal{N}(\mu, \sigma^2)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right)$ R: dnorm(x, mean=\mu, sd=\sigma)	$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{1}{2} \frac{(z-\mu)^2}{\sigma^2}\right) dz$ (keine geschlossene Form möglich) R: pnorm(q, mean= μ , sd= σ)	$E(X) = \mu$ $Var(X) = \sigma^2$ Quantile: R: qnorm(p, mean= μ , sd= σ) Zufallszahlen: R: rnorm(n, mean= μ , sd= σ)	Abweichungen von (Mess-) Werten, Näherung bei grossen Stichproben Bsp: Körpergrösse, Messfehler, Abweichungen vom Soll einer der Produktion, Füllmenge von Packungen, Intelligenz
Lognormal $X \sim \log \mathcal{N}(\mu, \sigma^2)$	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(\log(x) - \mu)^2}{\sigma^2}\right)$ R: dlnorm(x, mean=\mu, sd=\sigma)	$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma z \sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{(\log(z) - \mu)^2}{\sigma^2}\right) dz$ (keine geschlossene Form möglich) R: plnorm(q, mean= μ , sd= σ)	$E(X) = e^{(\mu + \frac{\sigma^2}{2})}$ $Var(X) = e^{(2\mu + \sigma^2)}(e^{\sigma^2} - 1)$ Quantile: R: qlnorm(p, mean= μ , sd= σ) Zufallszahlen: R: rlnorm(n, mean= μ , sd= σ)	rechtschiefe Messdaten mit nur positiven Werten Bsp: Geflogene Meilen, Lohn $X \sim \log N(\mu, \sigma^2) \iff \ln(X) \sim N(\mu, \sigma^2)$

... Inorm (In (px), In(52)

Verteilungen

Bivariate Normalverteilung

Definitionen

Notation mit Erwartungswert μ und Kovarianzmatrix Σ :

Fur X and Y zwei stetige Zufallsvariablen ist die funktion eine nicht negative Funktion
$$f_{XY}$$
, für mit $\Sigma = \begin{pmatrix} Var(X_1) & Cov(X_1, X_2) \\ Cov(X_1, X_2) & Var(X_2) \end{pmatrix} = \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} = \text{matrix} \{c(x, y) \mid P(X \in [a, b], Y \in [c, d]) = \int_a^b \int_a^b f_{XY}(x, y) dy dx dx dy$

Dichte:

$$f_{(X)}(x_1, x_2) = \frac{1}{2\pi\sqrt{\det[\Sigma]}} \exp\left(-\frac{1}{2}(x_1 - \mu_1, x_2 - \mu_2)\Sigma^{-1} \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix}\right)$$

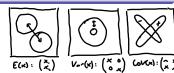
library (mythorm)
R: ..mvnorm(.., mean = μ , sigma = Σ)

Randdichte: Es gilt $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ und $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

Dies ist unabhängig von der Korrelation ρ .

Bedingte Dichte: Die bedingte Verteilung von X_1 gegeben $X_2 = x_2$ ist eine Normalverteilung:

$$(X_1|X_2 = x_2) \sim \mathcal{N}(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2), \sigma_1^2(1 - \rho^2))$$



P(x & x ; Y & y):

wenn x, y stochastisch unabhing: j:

- f(x, y) = f(x) · f(y) (prom(..., p, st) · prom (..., p, st)

very stockastisch abhängig:

- pmv norm (lower ((-Inf,-Inf), upper ((0,0), mm, sig)

Multivariate Verteilungen

Stetige multivariate Verteilung

Für X und Y zwei stetige Zufallsvariablen ist die gemeinsame Dichtefunktion eine nicht negative Funktion f_{XY} , für die gilt

$$P(X \in [a, b], Y \in [c, d]) = \int_{a}^{b} \int_{c}^{d} f_{XY}(x, y) dy dx$$

Diskrete multivariate Verteilung

Die Wahrscheinlichkeitsfunktion ist definiert als $p(x_i, y_i) = P(X = x_i, Y = y_i)$

die für jedes Paar (x_i, y_i) die Wahrscheinlichkeit angibt, mit der diese beiden Werte gleichzeitig realisiert werden.

Weitere Begriffe

Verteilungsfunktion: diskret: $\overline{P(X \le x, Y \le y)} = \sum_{x_i \le x, y_j \le y} p(x_i, y_j)$ $F_{XY}(x,y)$ - XY (a, y)

ext innere D-Fultion integrieren

(assers Unintes als Constante)

dan übrigbleibende Function als

äusser Fulkus integrieren. stetig: $\int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x,y) dy dx$ diskret: $p_{X}(x) = \sum_{j=1}^{\infty} p_{XY}(x,y_{j})$ stetig: $f_{X}(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy$ diskret $p_{X|Y}(x_{i} \mid y_{i}) = \frac{p_{XY}(x_{i},y_{i})}{p_{Y}(y_{i})}$ stetig: $f_{X|Y}(x \mid y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} P(X \leq x \mid Y \leq y) = \frac{P(Y \leq y)}{P(Y \leq y)} : p_{Y}(x_{i} \mid y_{i}) \text{ the } p_{Y}(x_{i} \mid y_{i})$ Wenn X and Y unabhängig gilt: Randdichte von X (analog für Y)

Bedingte Dichte:

Wenn X und Y unabhängig, gilt: Unabhängigkeit $F_{X|Y}(x,y) = F_{X}(x) \cdot F_{Y}(y)$

Stammfunktionen Potenzfunktionen:

Exponentialfunktion:

Partielle Integration:

Wurzel

Summe:

Log:

kdx = kx

 $\frac{1}{x}dx = \log(x)$

 $e^{cx}dx = \frac{1}{2}e^{cx}$

 $\frac{ax+b}{d}x = \frac{1}{a}\log(ax+b)$

log(x)dx = xlog(x) - x

 $\int x^{s} dx = \frac{1}{s+1} x^{s+1}$ $\int (ax+b)^{s} = \frac{1}{a(s+1)} (ax+b)^{s+1}$ $\int \sqrt{x} dx = \int x^{-1/2} dx = \frac{2}{3} x^{3/2} = \frac{2}{3} \sqrt{x^{3}}$

 $\int f(x) + g(x)dx = \int f(x)dx + \int g(x)dx$

 $\int f'(x)g(x)dx = [f(x)g(x)]_a^b - \int f(x)g'(x)dx$

Zusammenfassung WAHR

Simulationen und R-Befehle

Stochastische Simulation

Mit einer stochastischen Simulation bilden wir ein System oder einen Prozess nach, welcher zufallsbedingt ist. Zufallsbedingt meint:

- Faktoren eine Rolle spielen, die nur mit Messfehlern behaftet erhoben werden können
- deterministische Phänomene zu komplex für eine exakte Modellierung sind

Ziel ist es, das Verhalten des Systems oder des Prozesses zu verstehen und Erkenntnisse daraus für die Realität zu erlangen.

Allgemeines Vorgehen

- 1. Fragestellung, d.h. Zielgrösse definieren
- 2. Wesentliche Einflussgrössen des Systems identifizieren
- 3. Gegenseitige Beziehung der Einflussgrössen und Zielgrösse bes-
- 4. Implementierung des stochastischen Modells
- 5. Erzeugung einer Stichprobe für die Zielgrösse
- 6. Ergebnisbeurteilung

Simulation in R

Beispiel: Fischen

- 1. Was ist die Wahrscheinlichkeit mindestens 3 Fische zu fangen? Zielvariable: Anzahl gefangene Fische in 3 Stunden
- 2. Einflussfaktoren: Wetter, Angelstelle, Angelfähigkeit
- 3. Wetter: $P(sch\"{o}n) = 0.6$, P(schlecht) = 0.4
- X = Anzahl Fische an der Angelstelle pro Stunde $\sim Pois(\lambda)$ wobei λ abhängig vom Wetter:

 λ (w=schön) = 10.875,

 λ (w=schlecht) = 7.349

Angelfähigkeit: p = 0.11

Y = Anzahl gefangender Fische $\sim Bin(X, p)$

4.-6. siehe R-Code unterhalb der Box

```
set.seed(2354) # Für Reproduzierbarkeit
N <- 10000 # Anzahl Simulationsrunden
# Vektor mit simulierter Zufallszahlen für die Zielgrösse
NFang <- rep(NA, N)
# Simulation hier mittels For-Schleife
for (i in 1:N){
  # Hier den Prozess programmieren:
  Wetter <- sample(c("schön", "schlecht"), size = 1,
                           prob = c(0.6, 0.4))
 lambda <- ifelse(Wetter == "schön", 10.875, 7.349)
  AnzahlFische <- rpois(1, lambda)</pre>
  NFang[i] <- rbinom(1, size = AnzahlFische, prob = 0.11)
# Auswertung der simulierten Zufallszahlen
# Hier mittels relativer Häufigkeit
sum(NFang >= 3) / N
```

Inversionsmethode

Mithilfe von gleichverteilten Zufallszahlen lassen sich Zufallszahlen für andere Verteilungen durch geeignete Transformation erzeugen:

Inversions methode $F^{-1}(x) = g(x) \implies g(x)$

Wenn man auf eine Zufallsvariable $U \sim Unif([0,1])$ eine monotone Transformation (*) anwendet, so ist die Umkehrfunktion (*) die Verteilung der entstehenden Zufallsvariable.

Vorgehen

Gegeben: Zufallsvariable $U \sim Unif([0,1])$. Wahl einer Transformation: Umkehrfunktion der Verteilung

d.h. $F_X(x) = 1 - e^{-\lambda x} \Rightarrow g(x) = F_X^{-1}(x) = (\log(1 - x))/(-\lambda)$. Die Zufallszahlen erhält man dann mittels Y = g(U), da $F_V(y) = F_U(g^{-1}(y)) = g^{-1}(y) = 1 - e^{-\lambda y}$

Beispiel: Uniform nach Exponentialverteilung

u <- runif(10000)

g <- function(x,lambda){log(1-x)/(-lambda)}

x <- g(u,lambda=4) #Exponential verteilte Zufallszahlen

Umkehrung der Inversionsmethode

Man kann jede stetige Zufallsvariable X so transformieren, dass eine uniform verteilte Zufallsvariable U entsteht. Hierbei entspricht die Transformationsfunktion der Verteilungsfunktion, d.h. g(x) =

Beispiel: Exponentialverteilung nach Uniform

```
x < - rexp(10000)
y <- pexp(x) # uniform-verteilte Zufallszahlen
```

Weitere R Befehle

Definition und Zeichnen einer Dichte f(x): Beispiel:

$$f(x) = \begin{cases} \frac{5}{2} \cdot x^{-7/2} & x \ge 1\\ 0 & x < 1 \end{cases}$$

Logische Abfragen:

```
> x < -c(1,2,4,5)
```

> # Welche Zahl ist gleich 2?

> x == 2

[1] FALSE TRUE FALSE FALSE

> # Welche Zahl ist ungleich 2?

> x != 2

[1] TRUE FALSE TRUE TRUE

> # Verknüpfung mit UND (&)

> x >= 3 & x < 5

[1] FALSE FALSE TRUE FALSE

> # Verknüpfung mit ODER (|)

> x < 2 | x > 3

[1] TRUE FALSE TRUE TRUE

Testen, ob die Bedingung für irgendeinen Wert gilt.

> any(x > 3)

[1] TRUE

Testen, ob die Bedingung für alle gilt

> all(x > 0)

[1] TRUE