Analysis 2

Fabian Starc

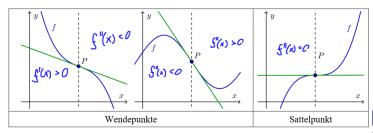
Version: September 24, 2025

Monotonität

Definitionsbereich bestimmen

wenn $f'(x) \ge 0$ dann ist der Graph monoton wachsend wenn $f'(x) \leq 0$ dann ist der Graph monoton fallend

Wende- und Sattelpunkte



Sattelpunkt: f'(x) = 0 und f''(x) = 0Wendepunkt: f'(x) = beliebig und f''(x) = 0relatives Maximum / relatives Minimum: f'(x) = 0

Hoch- und Tiefpunkte

- 1. f(x) ableiten
- 2. Nullstellen von f'(x) bestimmen = neues x_0
- 3. wenn $f''(x_0) < 0$ so ist $(x_0; f(x_0))$ ein relativer Hochpunkt.
- 4. wenn $f''(x_0) > 0$ so ist $(x_0; f(x_0))$ ein relativer Tiefpunkt.

Untersuchung von Funktionen

- 1. Definitionsbereich bestimmen
- 2. Symmetrieeigenschaften (gerade/ungerade) und Periodizität bestimmen
- 3. Nullstellen, y-Achsenabschnitt und Polstellen bestimmen
- 4. Randpunkte bestimmen bzw., wie sich die Funktion verhält, wenn x gegen die Grenzen des Definitionsbereichs strebt (ggf, Asymptote untersuchen)
- 5. Kandidaten für relative Extrema bestimmen und untersuchen
- 6. Wendepunkte suchen
- 7. Tabelle von Werten aufstellen (falls nötig)

Vorgehen bei Extremwertaufgaben

- 1. Zielgrösse bestimmen
- 2. Unabhängige Variable bestimmen
- 3. Definitionsbereich bestimmen $(d_1; d_2)$ oder $[d_1; d_2]$
- 4. Zielgrösse als Funktion ausdrücken (wenn möglich Skizze oder Graphen machen)
- 5. Ist Minimalstelle oder Maximalstelle gefragt? Randpunkte nicht vergesen!
- · erste Ableitung bestimmen.
- · Nullstellen von f'(x) herausfinden.
- · zweite Ableitung bestimmen.
- · Nullstelle in f''(x) einsetzen und prüfen:

wenn $f''(x_0) < 0 \rightarrow x_0$ ist relative Maximalstelle wenn $f''(x_0) > 0 \to x_0$ ist relative Minimalstelle

Wenn Intervall in $D \rightarrow \text{keine Randpunkte}$, keine weiteren Kandidaten.

6. Intervall in $D \to \lim_{x_0 \to d_1/d_2}$

- · relative Maximalstellen werden zu absoluten Maximalstellen wenn beide Grenzwerte gegen 0 gehen.
- · relative Minimalstellen werden zu absoluten Minimalstellen wenn beide Grenzwerte gegen ∞ gehen
- 7. Was ist gefragt? → Antwortsatz formulieren

Integrationsregeln

Funktion	Stammfunktion	Funktion	Stammfunktion
$x^a \ (a \neq 1 \in \mathbb{R})$	$\frac{x^{a+1}}{a+1}$	$\sin(x)$	$-\cos(x)$
e ^x	e ^x	cos(x)	$\sin(x)$
$a^x \ (a \in \mathbb{R}, a > 0)$	$\frac{a^{x}}{\ln(a)}$	$\frac{1}{x}$	$\ln(x)$

Integrationsmethoden

- 1. u definieren.
- 2. $u' = \frac{du}{dx}$
- 3. Nach dx auflösen
- 4. u in Integral einfügen.
- 5. u an Grenzen anwenden.
- 6. dx in Integral einfügen.
- 7. Stammfunktion bestimmen

١	Integraltyp	Substitution	Beispiele	Substitution
	$(A) \int f(ax+b) dx$	u = ax + b	$1. \int (2x-3)^6 dx$	u=2x-3
	Merkmal: Die Variable x tritt in der linearen Form	$dx = \frac{du}{a}$	$2. \int \sqrt{4x+5} \ dx$	u = 4x + 5
(II) M is F A (C) M st	$ax + b$ auf $(a \neq 0)$		$3. \int e^{4x+2} dx$	u=4x+2
	(B) $\int f(x) \cdot f'(x) dx$ <i>Merkmal:</i> Der Integrand	$u = f(x)$ $dx = \frac{du}{f'(x)}$	$1. \int \sin x \cdot \cos x dx$	$u = \sin x$
	ist das Produkt aus einer Funktion $f(x)$ und ihrer Ableitung $f'(x)$	<i>J</i> (4)	$2. \int \frac{\ln x}{x} dx$	$u = \ln x$
	(C) $\int \frac{f'(x)}{f(x)} dx$	$u = f(x)$ $dx = \frac{du}{f'(x)}$	$1. \int \frac{2x-3}{x^2-3x+1} dx$	$u = x^2 - 3x + 1$
	Merkmal: Im Zähler steht die Ableitung des Nenners		$2. \int \frac{e^x}{e^x + 5} dx$	$u=\mathrm{e}^x+5$

geeignete Substitutionen:

- ullet Wurzelterme: $u={\sf Term}$ unter der Wurzel
- e^x ; u = Term im Exponenten
- ullet Term mit Bruch und Wurzel im Nenner: u= Term unter der Wurzel im Nenner.

partielle Integration

$$\int u(x) * v'(x) dx = u(x) * v(x) - \int u'(x) * v(x) dx$$

$$\int u(x) * v'(x) dx = \left[u(x) * v(x) \right]_a^b - \int_a^b u'(x) * v(x) dx$$

Ablauf:

- 1. u(x) definieren
- 2. u'(x) (Ableiten)
- 3. v'(x) definieren
- 4. v(x) (Integrieren)
- 5. In Formel einsetzen und berechnen.
- 6. (Falls kein Grundintegral → wiederholen)

Partialbruchzerlegung

- 1. Nullstellen und Multiplizität des Nennerpolynoms N(x) bestimmen
- 2. (Wenn f(x) eine unecht gebrochen rationale Funktion ist; **Polynomdivision**)
- 3. Jeder der Nullstellen wird ein Partialbruch zugeordned:

$$x_{01}$$
: einfache Nullstell $\rightarrow \frac{A}{x-x_{01}}$

$$x_{01}$$
: einfache Nullstell $ightarrow rac{A}{x-x_{01}}$ x_{02} : doppelte Nullstelle $ightarrow rac{B}{x-x_{02}} + rac{C}{(x-x_{02})^2}$ x_{0r} : r-fache Nullstelle $ightarrow rac{D}{x-x_{0r}} + \cdots rac{E}{(x-x_{0r})}$

4. f(x) wird mit der Summe der Parialbrüche gleichgestellt:

$$f(x) = \frac{A}{x - x_{01}} + \frac{B}{x - x_{02}} + \frac{C}{(x - x_{02})^2} \dots$$

- 5. f(x) als einen Bruch schreiben. [Kürzen wo möglich!!]
- 6. Zähler des ursprünglichen Bruches dem neuen Zähler gleichstellen. Durch einsetzen von werten für x können die Konstanten $A, B, C \dots$ bestimmt werden.
- 7. f(x) mit gefundenen Werten für A, B, C schreiben.
- 8. Partialbrüche durch Integration mit Substitution integrieren:

$$\int \frac{1}{x - x_{01}} dx = \ln(|x - x_{01}|) + C_1$$
$$\int \frac{1}{(x - x_{0r})^r} dx = \frac{1}{(1 - r)(x - x_{0r})^{r-1}} + C_2$$

uneigentliche Integrale

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

Differentialgleichungen

Trennbare Differentialgleichungen

1

$$y' = \frac{dy}{dx} = f(x) * g(x)$$

2. Trennung der Variablen:

$$\frac{dy}{g(y)} = f(x) * dx$$

3. Integration auf beiden Seiten der Gleichung:

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

4. Nach y auflösen.

Anwendungen des Integrals

Volumen eines Rotationskörpers

$$V = \pi * \int_{a}^{b} (f(x))^{2} dx$$

f(x) für alle $x \in [a; b]$ a, b sind Grenzen des Rotationskörpers auf der x-Achse.

Bodenlänge einer ebenen Kurve

$$s = \int_a^b \sqrt{1 + (y')^2} \, dx$$

Wir betrachten eine Funktion f(x) über einem Intervall [a; b]. Die Bogenlänge der Kurve y=f(x) ist gegeben durch die obenstehende Formel.

Koordinaten des Schwerpunkts einer ebenen Fläche

$$x_s = \frac{1}{A} * \int_a^b x * (f(x) - g(x)) dx$$

$$y_s = \frac{1}{2A} * \int_a^b x * (f(x)^2 - g(x)^2) dx$$

Koordinate des Schwerpunkts eines Rotationskörper

$$x_s = \frac{\pi}{V} * \int_a^b x * (f(x))^2 dx$$

$$y_s = z_s = 0$$

Massetragneitsmoment

$$J = \frac{\pi \varrho}{2} \int_{a}^{b} (f(x))^{4} dx$$

Potenzreihen

Konvergenzradiu

Der Konvergenzradius der Potenzreihe

$$P(x) = \sum_{n=0}^{\infty} a_n * (x - x_0)^n$$

ist gegeben durch:

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

Der Konvergenzbereicht ist gegeben durch: $x \in (x_0 - r, x_0 + r)$

Taylornolynon

Gegeben ist eine Funktion $f:D\to R$ mit $D\in R$, die an der Stelle $x_0\in D$ (n+1)-mal differenzierbar ist. Dann heisst das Polynom

$$T_n f(x; x_0) = f(x_0) + \frac{f'(x_0)}{1!} * (x - x_0) + \frac{f''(x_0)}{2!} * (x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!} * (x - x_0)^n \cdots$$

Ebene Kurven

Parametrisierung Ebener Kurven

Kreis mit Radius R (Kartesische Koordinaten):

$$\vec{r}(\varphi) = \begin{pmatrix} R * \cos(\varphi) \\ R * \sin(\varphi) \end{pmatrix}$$

Kreis mit Radius R (Polarkoordinaten):

$$\vec{r}(\varphi) = R$$

Strecke von A nach B:

$$\vec{r}(t) = \vec{r}(A) + t * (\vec{r}(B) - \vec{r}(A))$$

Ellipse mit Halbachsen a in x-Richtung und b in y-Richtung:

$$\vec{r}(\varphi) = \begin{pmatrix} a * \cos(\varphi) \\ b * \sin(\varphi) \end{pmatrix}$$

Zykloide für einen Kreis mit Radius R:

$$\vec{r}(\varphi) = \begin{pmatrix} R * (\varphi - \sin(\varphi)) \\ R * (1 - \cos(\varphi)) \end{pmatrix}$$

Kreisevolvente für Kreis mit Radius R:

$$\vec{r}(\varphi) = \begin{pmatrix} R*(\cos(\varphi) + \varphi*\sin(\varphi)) \\ R*(\sin(\varphi) - \varphi*\cos(\varphi)) \end{pmatrix}$$

Krümmung einer ebenen Kurve

Ist eine ebene Kurve durch die explizite Gleichung y=f(x) gegeben, so berechnet sich die Krümmung κ im Punkt P(x,y) nach der Formel:

$$\kappa = \frac{f''(x)}{(1 + (f'(x))^2)^{3/2}} = \frac{y''}{(1 + (y')^2)^{3/2}}$$

der Krümmungsradius ist gegeben durch. $r=rac{1}{|\kappa|}$