Potenzgesetze $a^r \times a^s = a^{r+s}$ $a^r \div a^s = a^{r-s}$

$$a^r \times a^s = a^{r-s}$$

 $a^r \div a^s = a^{r-s}$
 $a^r \times b^r = (ab)^r$

$$a^r \div b^r = \left(\frac{a}{b}\right)^r$$

$$(a^r)^8 = a^{r \times 8}$$

$$a^{-r} = \frac{1}{a^r} = \left(\frac{1}{a}\right)^r$$

$$a^{\frac{r}{s}} = \sqrt[s]{a^r}$$

Mengen Reelle Zahlen R Irrational I Rational Q Transzendent T 3,3 Ganz \mathbb{Z} Natürlich N -2 2,25 In 2 -2·π 1+√5 -34 0,01 -70²

Basis (AN1&2)

Intervalle

Abgeschlossen: [1,3] = 1,2,3Offen: (1,3) = 2 gleich wie]1,3[

Halboffen: [1,3) =1,2

Unendlich: [a,∞)

Wurzelgesetze

Wenn a und b > 0:

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt{a \times b} = \sqrt{a \times a}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{a}}$$

$$\sqrt{a} = an$$

$$\sqrt[s]{\sqrt[r]{a}} = \sqrt[s \times r]{a}$$

$$(\sqrt[r]{a})^s = \sqrt[r]{a^s}$$

Logarithmusgesetze

$$\log_a P = \frac{\log P}{\log a}$$

$$\log_b a = x \Leftrightarrow b^x = a$$
$$\log_b(P \times Q) = \log_b P + \log_b Q$$

$$\log_b\left(\frac{P}{Q}\right) = \log_b P - \log_b Q$$

$$\log_b P^n = n \times \log_b P$$
$$\log_b \sqrt[n]{P} = \frac{\log_b P}{n}$$

Funktionen

Komposition: $(g \circ f)(x) = g(f(x))$

Symmetrie:

- Gerade f(-x) = f(x)
- Ungerade $f(-x) \neq f(x)$

Monoton:

- wachsend $f(x_1) \le f(x_2)$, streng <
- fallend $f(x_1) \ge f(x_2)$, streng >

Konvergent: Grenzwert existiert

Divergent: Kein Grenzwert oder Unendlich

Umkehrfunktion Nur wenn streng monoton und bijektiv

Bsp:
$$y = 3x - 5 \Rightarrow y - 5 = 3x \Longrightarrow x = \frac{y}{3} + \frac{5}{3} \Longrightarrow y = \frac{x}{3} + \frac{5}{3}$$

Nat. Log

 $\ln(x \cdot y) = \ln x + \ln y$

 $\ln(\frac{x}{y}) = \ln x - \ln y$

 $\ln x^n = n \cdot \ln x$

 $\ln \sqrt[n]{x} = \frac{1}{n} \ln x$

Binomische Formeln

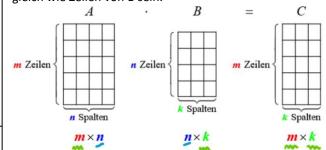
$$(a+b)^2 = a^2 + 2ab + b^2$$
 $a^X = b$
 $(a-b)^2 = a^2 - 2ab + b^2$

$$(a+b) \cdot (a-b) = a^2 - b^2 \times = \log_a b$$

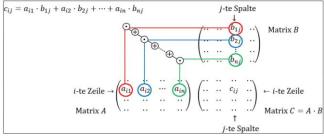
Tan = sin/cos, cot = cos/sin Sec = 1/cos, csc = 1/sin

Multiplikation von Matrizen

Damit die Multiplikation möglich ist, muss Spalte von A gleich wie Zeilen von B sein.



Das Element cii in der i -ten Zeile und j -ten Spalte der Ergebnismatrix C wird so berechne



Besonderheiten:

- Wenn A*B = A*C, heisst das nicht immer das B = C
- Wenn A*C = 0, heisst das nicht immer das eine Matrix 0 ist Rechenregeln:

Assoziativ-Gesetz: $A \cdot (B + C) = A \cdot B + A \cdot C$ und $(A + B) \cdot C = A \cdot C + B \cdot C$ Distributiv-Gesetze

<u>Ableitung</u>								
f(x)		f'(x)		f(x)			f'(x)	
С	0		5; 1; 10 e^{7x}			0		
e ^{ax}		$a \cdot e^{ax}$		6	e^{7x}		$7e^{7x}$	
ax^p	1	$0 \cdot ax^{p-1}$	_	$5x^{3}$;	$\frac{3x^2}{3x^2}$; 3: a^{7x}	χ :	$15x^2$; $6x$; 3	
a^x		$a^x \cdot \ln(a)$		3	a^{7x}	2	$1a^{7x} \cdot \ln(a)$	
$c \cdot \ln(ax)$	ас	$\div (ax +$	<i>b</i>)		c; ln x		1 ÷ x	
+ b)		,						
$b \cdot \cos(ax)$	-а	$b \cdot \sin(a)$	(x)	b·s	in(ax)	ä	$\frac{ab \cdot \cos(ax)}{a \cdot b}$	
$b \cdot \tan(ax)$		$a \cdot b$		<i>b</i> ⋅ si	$n^{-1} ax$		$a \cdot b$	
	((($\cos(ax)$	²)			1	$\frac{\sqrt{1-a^2\cdot x^2}}{a\cdot b}$	
$b \cdot \tan^{-1} ax$				b · co	$b \cdot \cos^{-1} ax$		$a \cdot b$	
	$\overline{a^2 \cdot x^2 + 1}$				-	$\sqrt{1-a^2\cdot x^2}$		
$\sqrt[b]{ax}$	b	$\sqrt[b]{a} \cdot x^{\frac{1}{b}-1}$		$\sqrt[5]{3x}$			$\frac{\sqrt{1-a^2\cdot x^2}}{\sqrt[5]{3}\cdot x^{\frac{1}{5}-1}}$	
,	_	$\frac{\sqrt{u \cdot x_b}}{1}$						
		b			<u></u>		5	
\sqrt{ax}	1 -	$1 \div (2 \cdot \sqrt{ax})$			$\sqrt{3x}$		$\div (2 \cdot \sqrt{3}x)$	
$\log_b ax$			$\log_2 4x$		1	$\div (x \cdot \log 2)$		
	$x \cdot \log_{10} b$							
x^x x^x	· (ln:	(x + 1)	(a	$(x)^{bx}$	b(ax)	bx.	$(\ln(ax) + 1)$	
а	abo	* * sec ^c (bx)	а			$bc * \cot(bx)$	
$* \sec^c (bx)$ $* \tan (bx)$		$* cosec^c(bx)$		* CS	$\operatorname{sc}^{c}(bx)$			
b * tan (ax) $ab * se$		$*sec^2(a$	ıx)					
$\frac{a}{h} * \sqrt{cx^d \pm fx^h}$		a(cdx ^a	$\frac{d}{dt} - f$	hx^h)	a(cdx	d-1	$-fhx^h-1)$	
$b = \sqrt{cx^d - 2bx\sqrt{cx^d - 2bx\sqrt{cx^d - 2bx\sqrt{cx^d - 2bx\sqrt{cx^d - 2bx\sqrt{cx^d - 2bx}}}}}$				${fx^h} =$	2 <i>l</i>	\sqrt{cx}	$\frac{d-fx^h}{d}$	
Umkehrfunktion: $(f^{-1})(x) = \frac{1}{f'(f^{-1}(x))}$								
$f'(f^{-1}(x))$								
$f(x) = \cot(x) \Rightarrow f'(x) = -1 - (\cot x)^2 = -\frac{1}{(\sin x)^2}$								
<i>f</i> (%) — c	$f(x) = \cot(x) \Rightarrow f'(x) = -1 - (\cot x)^2 = -\frac{1}{(\sin x)^2}$							

Rechenregeln

 $\sin(x) = \cos(x) = -\sin(x) = -\cos(x) = \sin(x)$

Produktregel: $f(x) = u(x) \times v(x) \Rightarrow f'(x) = u'(x) \times v(x) + v(x)$ $u(x) \times v'(x)$

Quotientenregel: $f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2}$

Kettenregel: $f(x) = (u \circ v)(x) = u(v(x)) \Rightarrow f'(x) =$ $u'(v(x)) \times v'(x)$

wenn $ax^2+bx+c=0$

 $tan(x) = > sec^2(x)$

Darstellung NL-LGS

Explizit: $y = f(x_1, ..., x_n)$ Implizit: $0 = F(x_1, ..., x_n)$

$$\left|rac{d}{dx}\left(a+bx^2
ight)^n=2nbx\left(a+bx^2
ight)^{n-1}$$

Rechenregeln Addition von Matrizen

Kommutativ-Gesetz:

A+B=B+A

Assoziativ-Gesetz:

A+(B+C)=(A+B)+C

Distributiv-Gesetze:

 $\lambda \cdot (A+B) = \lambda \cdot A + \lambda \cdot B$ und $(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A$

Matrizen Gleichung

$$\begin{array}{cc}
x & -3y = 5 \\
4y = 8
\end{array}$$

$$\begin{pmatrix} A & -3 \\ 0 & 4 \end{pmatrix} \cdot \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} S \\ 8 \end{pmatrix}$$

Inverse

$$A * A^{-1} = E(Einheitsmatrix)$$

Nur möglich bei 2x2, wenn: $ad - bc \neq 0$ oder $Det(A) \neq 0$

Bestimmen für 2x2:
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} * \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Für LGs mit 1 LösungS: $A^{-1} * A * \vec{x} = A^{-1} * \vec{b} \implies \vec{x} = A^{-1} * \vec{b}$ Bei NxN invertierbar wenn det(A) nicht 0.

$$A \cdot A^{-1} = E$$

$$\underbrace{\begin{pmatrix} 4 & -1 & 0 \\ 0 & 2 & 1 \\ 3 & -5 & -2 \end{pmatrix}}_{A} \cdot \underbrace{\begin{pmatrix} \chi_1 & y_1 & z_1 \\ \chi_2 & y_2 & z_2 \\ \chi_3 & y_3 & z_3 \end{pmatrix}}_{A^{21}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\stackrel{\stackrel{.}{E}}{E}} \to \underbrace{\begin{pmatrix} 4 & -1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 3 & -5 & -2 & 0 & 0 & 1 \end{pmatrix}}_{0 0 0 1}$$

Zeilenstufenform (linke Seite)

$$\begin{pmatrix} 1 & -1/4 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1 & -6 & 17 & 8 \end{pmatrix}$$

Reduzierte Zeilenstufenform (linke Seite)

$$\begin{pmatrix} 1 & 0 & 0 & 1 & -2 & -1 \\ 0 & 1 & 0 & 3 & -8 & -4 \\ 0 & 0 & 1 & -6 & 17 & 8 \end{pmatrix} \rightarrow A^{-1} = \begin{pmatrix} 1 & -2 & -1 \\ 3 & -8 & -4 \\ -6 & 17 & 8 \end{pmatrix}$$

Transponieren von Matrix

Matrix mit m*n wird zu n*m transponiert.

$$\begin{bmatrix}
Z_1 \to \\
Z_2 \to \\
Z_3 \to
\end{bmatrix}^T = \begin{bmatrix}
X \\ \downarrow \\
\downarrow
\end{bmatrix} \begin{bmatrix}
7 & -1 \\
0.2 & 11 \\
3 & 5
\end{bmatrix}^T = \begin{bmatrix}
7 & 0.2 & 3 \\
-1 & 1 & 5
\end{bmatrix}$$

$$\begin{array}{c}
3 \times 2 & 7 \\
3 \times 2 & 7
\end{array}$$

$$\begin{array}{c}
3 \times 2 & 7 \\
3 \times 2 & 7
\end{array}$$

Dabei gilt immer:

$$(A*B)^T = A^T * B^T$$

LGS in reduzierter Zeilenstufenform lösen

Frei unbekannte:
$$x_3$$
 = a

Matrizen (LA)

Determinante

$$\det(A) = \det(A^{T})$$

$$\det(AB) = \det(A) * \det(B) \text{ nicht mit } \pm$$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(E) = \det(A * A^{-1}) = 1$$

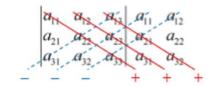
$$\det(\gamma * A) = \gamma^{n} * \det(A)$$

$$222: A = \begin{bmatrix} a & b \\ \det(A) & = a * d - b * c \end{bmatrix}$$

Für 2x2:
$$A = \begin{pmatrix} a & b \\ c & d \\ a & b \end{pmatrix} \det(A) = a * d - b * c$$

Für 3x3:
$$A = d$$
 e $f \det(A) = a * e * i + b * f * g + g + h$ i

$$c * d * h - c * e * g - a * f * h - b * d * i$$



Für nxn:

Entwicklung nach der i-ten Zeile:

Entwicklung nach der j-ten Spalte:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij}) \quad \det(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij})$$

$$\begin{pmatrix} 1^+ & 5 & 9 & 13 \\ 2^- & 6 & 10 & 14 \\ 3^+ & 7 & 11 & 15 \\ 4^- & 8 & 12 & 16 \end{pmatrix} = 1 \begin{pmatrix} 6 & 10 & 14 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} - 2 \begin{pmatrix} 5 & 9 & 13 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} + 3 \begin{pmatrix} 5 & 9 & 13 \\ 6 & 10 & 14 \\ 8 & 12 & 16 \end{pmatrix} - 4 \begin{pmatrix} 5 & 9 & 13 \\ 6 & 10 & 14 \\ 7 & 11 & 15 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 10 & 14 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} = +6 \cdot \begin{pmatrix} 11 & 15 \\ 12 & 16 \end{pmatrix} - 7 \cdot \begin{pmatrix} 10 & 14 \\ 12 & 16 \end{pmatrix} + 8 \cdot \begin{pmatrix} 10 & 14 \\ 11 & 15 \end{pmatrix} = 6 \cdot -4 - 7 \cdot -8 + 8 \cdot -4 = 0$$

$$\begin{pmatrix} 5 & 9 & 13 \\ 7 & 11 & 15 \\ 8 & 12 & 16 \end{pmatrix} = +5 \cdot \begin{pmatrix} 11 & 15 \\ 12 & 16 \end{pmatrix} - 7 \cdot \begin{pmatrix} 9 & 13 \\ 12 & 16 \end{pmatrix} + 8 \cdot \begin{pmatrix} 9 & 13 \\ 11 & 15 \end{pmatrix} = \cdots$$

$$\begin{pmatrix} 5 & 9 & 13 \\ 6 & 10 & 14 \\ 7 & 11 & 15 \end{pmatrix} = +5 \cdot \begin{pmatrix} 10 & 14 \\ 11 & 15 \end{pmatrix} - 6 \cdot \begin{pmatrix} 9 & 13 \\ 11 & 15 \end{pmatrix} + 7 \cdot \begin{pmatrix} 9 & 13 \\ 10 & 14 \end{pmatrix} = \cdots$$

Für oberer Dreiecksmatrix: Produkt der Diagonalen **Linear unabhängig:**

Die Vektoren $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_k}$ sind *linear unabhängig*, wenn gilt:

- $0 \cdot \overrightarrow{a_1} + 0 \cdot \overrightarrow{a_2} + \cdots + 0 \cdot \overrightarrow{a_k}$ ist die einzige Linearkombination, die $\overrightarrow{0}$ ergibt
- $\lambda_1 \cdot \overrightarrow{a_1} + \lambda_2 \cdot \overrightarrow{a_2} + \dots + \lambda_k \cdot \overrightarrow{a_k} \neq \overrightarrow{0} \ (\lambda > 0 \land \lambda \in \mathbb{R})$

Die folgenden Aussagen sind äquivalent:

- det(A) ≠ 0
- Spalten von A sind linear unabhängig
- Zeilen von A sind linear unabhänaia
- ra(A) = n
- A ist invertierbar
- Das LGS $A \cdot \vec{x} = \vec{c}$ hat eine eindeutige Lösung

Definition Quadratische Matrix

Quadratisch: Gleich viele Zeilen wie Spalten

 $\textbf{Hauptdiagonale:}\ a_{11}\textbf{,}\ a_{22}\textbf{,}\ \dots$

Diagonalmatrix: Alle Elemente ausserhalb diagonale = 0
Einheitsmatrix: Diagonalmatrix und alle Elemente = 1
Obere Dreiecksmatrix: Alle Elemente unter diagonale = 0
Untere Dreiecksmatrix: Alle Elemente über diagonale = 0
Symmetrische Matrix: Elemente über und unter diagonale sym.

Potenzen sind nicht kommunikativ: $(AB)^2 \neq A^2 * B^2$

Zeilenstufenform

- Alle Zeilen, die nur 0 enthalten, stehen zuunterst
- Wenn nicht nur null = vorderste Zahl die 1
- Einsen sind nach unten rechts geordnet
- Reduziert = Alle Spalten mit führenden 1, haben sonst nur 0

Matrix Rang und Lösbarkeit

 $rg(A) = Anzahl \ Zeilen - Anzahl \ Nullzeilen$ $n = Anzahl \ Unbekannte$

- Lösbar: $rg(A) = rg(A|\vec{c})$

- Genau eine: rg(a) = n

- Unendlich: rg(A) < n

 $\vec{c} = Erweiterte\ Koeff.\ Matrix$

Matrizengleichung	erweiterte Koeff.matrix
$ \binom{3}{1} - \binom{x}{y} = \binom{-1}{16} $	$\binom{3}{1} \frac{-1}{2} \begin{vmatrix} -1\\16 \end{pmatrix}$

Für eine $(m \times n)$ -Matrix A gilt $rg(A) \leq min(m, n)$.

Freie Unbekannte in LGS

1 = führende 1 => führende unbekannte => kann nicht frei

gewählt werden
$$\begin{pmatrix} 1 & -2 & 0 & 3 & 5 \\ 0 & 0 & 1 & 1 & 3 \end{pmatrix}$$

<u>Normiert</u>

Vektor v ist nach x normiert = v/x

bezüglich der 2-Norm auf die Länge 1 normiert sein sollen:

Länge
$$||v||=1$$
 normiert, d. h.:

$$v_{ ext{normiert}} = rac{v}{||v||}$$

Partielle Ableitung

Es werden alle ausser 1 unbekannte als konstant angesehen, dann abgeleitet. Wenn dann Punkt eingesetzt wird, wird die konkreten Steigungen der Tangenten berechnet **Geometrisch**: Die Steigung der Flächentangente im Flächenpunkt $P = (x_0, y_0, z_0)$ in positiver x/v-Richtung

Interpolation

Stetige Funktion welche exakt durch gegebene Stütz-punkte geht -> Interpolierende(InfiniteL)

Linearisierung

Tangentengleichung:
$$g(x) = f(x^{(0)}) + Df(x^{(0)}) * (x - x^{(0)})$$

$$f(x) = \begin{pmatrix} y_1 = f_1(x) \\ y_2 = f_2(x) \\ \vdots \\ y_m = f_m(x) \end{pmatrix}, \quad Df(x) \coloneqq \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix}$$

$$\overline{f(x_1,x_2)} = egin{pmatrix} f_1(x_1,x_2) \ f_2(x_1,x_2) \end{pmatrix} = egin{pmatrix} x_1^2 + x_2 \ \sin(x_1 \cdot x_2) \end{pmatrix} \quad ext{mit } f: \mathbb{R}^2 o \mathbb{R}^2$$

1. Jacobi-Matrix berechnen mit partiellen Ableitungen

$$Df(x_1,x_2) = egin{pmatrix} rac{\partial f_1}{\partial x_1} & rac{\partial f_1}{\partial x_2} \ rac{\partial f_2}{\partial x_1} & rac{\partial f_2}{\partial x_2} \end{pmatrix} = egin{pmatrix} 2x_1 & 1 \ x_2\cos(x_1x_2) & x_1\cos(x_1x_2) \end{pmatrix}$$

2. Punkt einsetzen, hier $x^{(0)} = (1,\pi)$

$$Df(1,\pi) = egin{pmatrix} 2\cdot 1 & 1 \ \pi\cos(\pi) & 1\cdot\cos(\pi) \end{pmatrix} = egin{pmatrix} 2 & 1 \ -\pi & -1 \end{pmatrix}$$

3. Linearisierung in der Umgebung $x^{(0)}$ Berechne $f(1,\pi)$:

$$f(1,\pi) = egin{pmatrix} 1^2 + \pi \ \sin(1 \cdot \pi) \end{pmatrix} = egin{pmatrix} 1 + \pi \ 0 \end{pmatrix}$$

Dann ist die linearisierte Funktion:

$$g(x) = f(1,\pi) + Df(1,\pi)(x-(1,\pi)^T)$$
 $g(x) = egin{pmatrix} 1+\pi \ 0 \end{pmatrix} + egin{pmatrix} 2 & 1 \ -\pi & -1 \end{pmatrix} egin{pmatrix} x_1-1 \ x_2-\pi \end{pmatrix}$

Wenn nur eine Gleichung: $P = (x_1^{(0)}, x_2^{(0)}, f(x_1^{(0)}, x_2^{(0)}))$

Gedämpftes Newton-Verfahren =4

Nur in der Nähe der Nullstelle ist Konvergenz des Verfahrens garantiert!

- 1. Berechne $f(x^{(n)})$ und $Df(x^{(n)})$
- 2. Berechne $\delta^{(n)}$ als Lösung des lin. GS $Df(x^{(n)}) \cdot \delta^{(n)} = -f(x^{(n)})$
- 3. Finde das minimale $k \in \{0, 1, ..., k_{max}\}$ mit

$$\left\| f\left(x^{(n)} + \frac{\delta^{(n)}}{2^k}\right) \right\|_2 < \left\| f\left(x^{(n)}\right) \right\|_2$$

Kein minimales k gefunden $\rightarrow k = 0$

4. Setze

$$\chi^{(n+1)} := \chi^{(n)} + \frac{\delta^{(n)}}{2^k}$$

Lagrange Interpolationsformel

Polynominterpolation mit Vandermonde-Matrix ist aufwendig und schlecht konditioniert, darum andere Lösungsmethoden.

Durch n+1 Stützpunkte vom Grad $\leq n$ mit verschiedenen Stützstellen $(x_i \neq x_i \text{ für } i \neq j)$ gibt es genau ein $P_n(x)$ mit $grad \leq n$ welches alle Punkte interpoliert: $P_n(x) = \sum_{i=0}^n l_i(x) y_i$. Dabei $l_i(x) = \prod_{j=0}^n \frac{x-x_j}{x_i-x_j}$

Fehlerabschätzung: das Maximum der (n + 1) Ableitung der Funktion f (x) auf dem Intervall $[x_0, x_n]$ muss bekannt sein:

Sind die y_i Funktionswerte einer genügend oft stetig differenzierbaren Funktion j (also $y_i = f(x_i)$), dann ist der Interpolationsfehler an einer Stelle x gegeben durch

$$|f(x) - P_n(x)| \le \frac{|(x - x_0)(x - x_1) \dots (x - x_n)|}{(n+1)!} \max_{x_0 \le \xi \le x_n} f^{(n+1)}(\xi)$$

Beispiel: Geben sind:

- x = [0, 250, 500, 1000]
- y = [1013,747,540,226]

Berechnung der Lagrangepolynome

- $\begin{array}{l} \bullet \quad l_0 = \frac{x-x_1}{x_0-x_1} \cdot \frac{x-x_2}{x_0-x_2} \cdot \frac{x-x_3}{x_0-x_3} = \frac{375-250}{0-250} \cdot \frac{375-500}{0-500} \cdot \frac{375-1000}{0-1000} = -0.078 \\ \bullet \quad l_1 = \frac{x-x_0}{x_1-x_0} \cdot \frac{x-x_2}{x_1-x_2} \cdot \frac{x-x_3}{x_1-x_3} = \frac{375-0}{250-0} \cdot \frac{375-500}{250-500} \cdot \frac{375-1000}{250-1000} = 0.625 \\ \bullet \quad l_2 = \frac{x-x_0}{x_2-x_0} \cdot \frac{x-x_1}{x_2-x_1} \cdot \frac{x-x_3}{x_2-x_3} = \frac{375-0}{500-0} \cdot \frac{375-250}{500-250} \cdot \frac{375-1000}{500-1000} = 0.469 \\ \bullet \quad l_3 = \frac{x-x_0}{x_3-x_0} \cdot \frac{x-x_1}{x_3-x_1} \cdot \frac{x-x_2}{x_3-x_2} = \frac{375-0}{1000-0} \cdot \frac{375-250}{1000-250} \cdot \frac{375-500}{1000-550} = -0.016 \\ \end{array}$

Gesucht ist der y - Wert an der Stelle x = 375

$$P_n(375) = \sum_{i=0}^{n} l_i(375) \cdot y_i$$

$$P_n(375) = -0.078 \cdot 1013 + 0.625 \cdot 747 + 0.469 \cdot 540 + -0.016 \cdot 226$$

 $P_n(375) = 637.328 \, hPa$

Spline Interpolation Punkt berechnen

1. Segment finden und dann in $S_i(x)$ einsetzen, für Ableitung:

Ableitungsformel anwenden: Benutze die Formel $S_i'(t) = B_i + 2C_i(t-t_i) + 3D_i(t-t_i)$ $(t_i)^2$ mit t=1 und dem Startpunkt t_i des gefundenen Segments.

Quadratisch-konvergentes Newton-Verfahren

Kann auch lokales Minimum finden, dann ist Df nicht regulär(invertierbar). Es konvergiert, wenn nahe genug an 0, Df regulär und f dreimal stetig differenzierbar. Lösung von f(x) = 0 mit $f: \mathbb{R}^n \to \mathbb{R}^n$ für n = 0,1,2,...

- 1. Berechne $f(x^{(n)})$ und $Df(x^{(n)})$
- 2. Berechne $\delta^{(n)}$ als Lösung des lin. GS $Df(x^{(n)}) \cdot \delta^{(n)} = -f(x^{(n)})$
- 3. Setze $x^{(n+1)} := x^{(n)} + \delta^{(n)}$

Vereinfacht: Es wird immer $Df(x^0)$ verwendet, somit konvergiert es linear.

Splineinterpolation - kubisch

Polynome mit einem hohen Grad oszilliere, daher werden mehrere Polynome aneinandergehängt alle 3 Punkte. Wenn für Punkt gefragt muss immer S,S',S", gleich sein bei Grenzen. Periodische: 1&2 Ableitung von Anfang und n-1 ist gleich. **Not-a-knot**: $S_0^{\prime\prime\prime}(x_1) =$ $S_1^{\prime\prime\prime}(x_1) \& S_{n-2}^{\prime\prime\prime}(x_{n-1}) = S_{n-1}^{\prime\prime\prime}(x_{n-1})$

Natürliche: 2. Ableitung von Anfang und Ende = 0. $S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$ Berechnung der Polynome $S_i(x)$ für i = 0, 1, ..., n - 1:

1: Koeffizienten a_i, h_i, c_0, c_n

$$a_i = y_i, h_i = x_{i+1} - x_i, c_0 = 0, c_n = 0$$

2: Koeffizienten $c_1, c_2, \dots c_{n-1}$ aus dem Gleichungssystem (Ac = z)

- *i* = 1 $2(h_0 + h_1) \cdot c_1 + h_1 c_2 = 3 \frac{(y_2 - y_1)}{h_1} - 3 \frac{(y_1 - y_0)}{h_0}$
- $n \ge 4 \to i = 2, ..., n-2$ $h_{i-1}c_{i-1} + 2(h_{i-1} + h_i) \cdot c_i + h_i c_{i+1} = 3 \frac{(y_{i+1} - y_i)}{h_i} - 3 \frac{(y_{i-y_{i-1}})}{h_{i-1}}$
- $h_{n-2}c_{n-2} + 2(h_{n-2} + h_{n-1}) \cdot c_{n-1} = 3\frac{(y_{n-1}y_{n-1})}{h_{n-1}} 3\frac{(y_{n-1}-y_{n-2})}{h_{n-2}}$

3: Koeffizienten b_i und d_i

- $b_i = \frac{(y_{i+1} y_i)}{h_i} \frac{h_i}{3} (c_{i+1} + 2c_i)$ $d_i = \frac{1}{3h_i} (c_{i+1} c_i)$

$$\mathbf{A} = \begin{pmatrix} 2(h_0 + h_1) & h_1 \\ h_1 & 2(h_1 + h_2) & h_2 \\ & h_2 & 2(h_2 + h_3) & h_3 \\ & \ddots & \ddots & \ddots \\ & & h_{n-3} & 2(h_{n-3} + h_{n-2}) & h_{n-2} \\ & & & h_{n-2} & 2(h_{n-2} + h_{n-1}) \end{pmatrix}$$

$$c=\left(egin{array}{c} c_1 \ c_2 \ \vdots \ c_{n-1} \end{array}
ight), \quad z=\left(egin{array}{c} 3rac{y_2-y_1}{h_1} - 3rac{y_1-y_0}{h_0} \ 3rac{y_2-y_1}{h_2} - 3rac{y_2-y_1}{h_1} \ \vdots \ 3rac{y_n-y_{n-1}}{h_{n-1}} - 3rac{y_{n-1}-y_{n-2}}{h_{n-2}} \end{array}
ight)$$

Ausgleichsrechnung

Ausgleichsproblem: Ziel ist die Datensätze möglichst zu approximieren, nicht genau treffen wie bei Interpolation. Dafür ist stetige Funktion gesucht. Macht bei vielen Punkten Sinn.

Lineare: f(x) ist eine Linearkombination von m Basisfunktionen. Dabei müssen die Basisfunktionen nicht linear sein, nur Parameter λ $f(x) = \lambda_1 f_1(x) + \cdots + \lambda_m f_m(x)$, $(i = 1, 2, ..., m \text{ und } m \leq n)$

$$f(x) = \lambda_1 f_1(x) + \dots + \lambda_m f_m(x), \qquad (i = 1,2)$$

Beispiel: $f(x) = a * e^x + b + c * x$

Nicht-linear: Die Parameter λ sind in der Funktionsgleichung verwoben $f = f(\lambda_1 \lambda_2, ..., \lambda_m, x)$ Beispiel: $f(x) = \sin(ax) + \ln(bx)$

Ausgleichsfunktion

Gesucht wird aus einer Menge F stetiger Funktionen f diejenige Funktion, die am besten an gegebene Datenpunkte (x_i, y_i) passt, indem sie den quadratischen Fehler minimiert.

Details:

- Ansatzfunktionen $f \in F$: Stetige Funktionen auf einem Intervall [a,b], die als Näherungen für die Daten dienen.
- Fehlerfunktional E(f): Misst den quadratischen Fehler zwischen den Datenwerten y_i und den Funktionswerten $f(x_i)$. Formal:

$$E(f) := \|y - f(x)\|_2^2 = \sum_{i=1}^n (y_i - f(x_i))^2$$

• **Optimierung:** Gesucht ist die Funktion $f \in F$, für die E(f) minimal ist:

$$E(f) = \min\{E(g) \mid g \in F\}$$

 Ergebnis: Die optimale Funktion f heißt Ausgleichsfunktion im Sinne der Methode der kleinsten Fehlerquadrate (least squares fit).

Die Minimierung von E(f) entspricht der Minimierung des Quadrats der **2-Norm** des Fehlervektors. Mann kann auch die Fehler in der Summe gewichten, wenn Datenpunkte z.B. höhere Messgenauigkeit haben.

Normalgleichungssystem

n Gleichungen, m
 Unbekannte, meist n > m \rightarrow überbestimmtes Fehlergleichungssystem

Ziel: quadratische Fehlerfunktion $E(f) = \sum_i (f(x_i) - y_i)^2$ minimieren

$$rac{\partial E}{\partial \lambda_j} = 0, \; j = 1, \ldots, m$$

liefert die Normalgleichungen.

Matrixform mit $A \in \mathbb{R}^{n imes m}$, $y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^m$:

$$A^{\mathrm{T}}A\lambda = A^{\mathrm{T}}y$$
.

Direkte Lösung über $A^{\mathrm{T}}A$ instabil, weil $A^{\mathrm{T}}A$ meist schlecht konditioniert.

Stabilere Variante: QR-Zerlegung A=QR mit orthogonalem Q ($Q^{\mathrm{T}}Q=I_n$) und rechtsoberem, regulärem $R\in\mathbb{R}^{m imes m}$.

$$(QR)^{\mathrm{T}}(QR)\lambda = (QR)^{\mathrm{T}}y \Longrightarrow R^{\mathrm{T}}Q^{\mathrm{T}}QR\lambda = R^{\mathrm{T}}Q^{\mathrm{T}}y \Longrightarrow R^{\mathrm{T}}R\lambda = R^{\mathrm{T}}Q^{\mathrm{T}}y \Longrightarrow R\lambda = Q^{\mathrm{T}}y.$$

 $R\lambda=Q^{\mathrm{T}}y$ ist besser konditioniert und wegen der Dreiecksgestalt von R per Rückwärtseinsetzen lösbar. Kosten: einmalige QR-Zerlegung, Nutzen: keine Bildung von $A^{\mathrm{T}}A$, höhere numerische Stabilität.

Spezialfall n=m: exakte Lösung, E(f)=0, Interpolation.

Ausgleichsrechnung

Allgemeines Ausgleichsprobleme

Einige Probleme können auf Lineare umgeformt werden, für den Rest:

Gegeben sind n Wertepaare (x_i, x_i) und Ansatzfunktionen $f_p = f_p(\lambda_1, \lambda_2, ..., \lambda_m, x)$ mit m Parametern $\lambda_j \in \mathbb{R}$.

Gesucht sind m Parameter $\lambda=(\lambda_1,\lambda_2,\dots,\lambda_m)^T$ so, dass das **nichtlineare** Fehlerfunktional E(f)

$$E(f) = \sum_{i=1}^{n} \left(y_i - f_p(\lambda_1, \lambda_2, \dots, \lambda_m, x_i) \right)^2 \to min$$

$$\equiv \| y - f(\lambda) \|_2^2 \to min$$

minimal wird unter allen zulässigen Belegungen der Parameter λ , wobei

$$f(\lambda) \coloneqq f(\lambda_1, \lambda_2, \dots, \lambda_m) \coloneqq \begin{pmatrix} f_1(\lambda_1, \lambda_2, \dots, \lambda_m) \\ f_2(\lambda_1, \lambda_2, \dots, \lambda_m) \\ \vdots \\ f_n(\lambda_1, \lambda_2, \dots, \lambda_m) \end{pmatrix} \coloneqq \begin{pmatrix} f_p(\lambda_1, \lambda_2, \dots, \lambda_m, x_1) \\ f_p(\lambda_1, \lambda_2, \dots, \lambda_m, x_2) \\ \vdots \\ f_p(\lambda_1, \lambda_2, \dots, \lambda_m, x_n) \end{pmatrix}$$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \qquad \lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{pmatrix}$$

Das System $A\lambda=y$ heisst Fehlergleichungssystem. Beispiel

Gegeben sei die Ansatzfunktion $f(x) = ae^{bx}$ für die Werte

- x = [0,1,2,3,4]
- y = [3,1,0.5,0.2,0.05]

Fehlerfunktional

$$E(f) = \sum_{i=1}^{5} (y_i - f_p(a, b, x_i))^2 = \sum_{i=1}^{5} (y_i - ae^{bx})^2$$

Vektorwertige Funktion f(a, b) bilden

$$f(a,b) = \begin{pmatrix} ae^{bx_1} \\ \vdots \\ ae^{bx_5} \end{pmatrix}, \quad y = \begin{pmatrix} 3 \\ \vdots \\ 0.05 \end{pmatrix}$$

Funktion g(a, b) und Jacobi-Matrix Df(a, b) bilden

$$g(a,b) = y - f(a,b) = \begin{pmatrix} y_1 - ae^{bx_1} \\ \vdots \\ y_5 - ae^{bx_5} \end{pmatrix} = \begin{pmatrix} 0 - ae^{bx_1} \\ \vdots \\ 0.05 - ae^{bx_5} \end{pmatrix}$$

$$Dg(a,b) = \begin{pmatrix} -1 & 0 \\ -e^{b\cdot 1} & -1ae^{b\cdot 1} \\ -e^{b\cdot 2} & -2ae^{b\cdot 2} \\ -e^{b\cdot 3} & -3ae^{b\cdot 3} \\ -e^{b\cdot 4} & -4ae^{b\cdot 4} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -e^{-1.5} & -1e^{-1.5} \\ -e^{-3} & -2e^{-3} \\ -e^{-4.5} & -3e^{-4.5} \\ -e^{-6} & -4e^{-6} \end{pmatrix}$$

Nicht Lineares Ausgleichsproblem mit entsprechendem Verfahren lösen..

· Gauss-Newton oder gedämpftes Gauss-Newton

Lineares Ausgleichproblem

Gegeben seien

- n Wertepaare (x_i, x_i) , i = 1, ..., n, und
- m Basisfunktionen f_1, \dots, f_m auf einem Intervall [a, b].

F ist die Menge der Ansatzfunktionen $f := \lambda_1 f_1 + \dots + \lambda_m f_m$ mit $\lambda_i \in \mathbb{R}$

$$F = \{ f = \lambda_1 f_1 + \dots + \lambda_m f_m | \lambda_i \in \mathbb{R}, j = 1, \dots, m \}$$

Lineares Ausgleichsproblem mit dem Fehlerfunktional E(f)

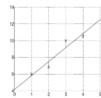
$$E(f) = \|y - f(x)\|_{2}^{2} = \sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2} = \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{m} \lambda_{j} f_{j}(x_{i})\right)^{2} = \|y - A\lambda\|_{2}^{2}$$

Vor, wobei

$$A = \begin{pmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_m(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_m(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ f_1(x_n) & f_2(x_n) & \cdots & f_m(x_n) \end{pmatrix}, \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \qquad \lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Das System $A\lambda = y$ heisst Fehlergleichungssystem. Beispiel: Gegeben sei die Ansatzfunktion f(x) = ax + b für die Werte

- x = [1, 2, 3, 4]
- y = [6, 6.8, 10, 10.5]



1: Basisfunktionen bestimmen

$$f(x) = a \cdot \underbrace{x}_{f_1(x)} + b \cdot \underbrace{1}_{f_2(x)}$$

2: Matrix A definieren für n = 4 und m = 2

$$A = \begin{pmatrix} f_1(x_1) & f_2(x_1) \\ f_1(x_2) & f_2(x_2) \\ f_1(x_3) & f_2(x_3) \\ f_1(x_4) & f_2(x_4) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix}$$

3: Normalgleichungssystem aufstellen $A^T A \lambda = A^T y$

$$A^{T}A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 30 & 10 \\ 10 & 4 \end{pmatrix}$$

$$A^{T}y = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 6.8 \\ 10 \\ 10.5 \end{pmatrix} = \begin{pmatrix} 91.6 \\ 33.3 \end{pmatrix}$$

4: Gleichung auflösen

$$\begin{pmatrix} 30 & 10 \\ 10 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 91.6 \\ 33.3 \end{pmatrix} \rightarrow \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1.67 \\ 4.15 \end{pmatrix}$$

Gauss-Newton-Verfahren

Quadratmittelproblem: Gegeben sind Funktion $g: \mathbb{R}^m \to \mathbb{R}^n$ und Fehlerfunktional $E: \mathbb{R}^m \to \mathbb{R} := ||g(x)||_2^2$. Es soll Vektor x gefunden werden bei den E minimal wird. Für Nichtlineare Ausgleichsprobleme wird g(x) erstetzt mit $g(\lambda) := y - f(\lambda)$ **Verfahren**: $g(\lambda) \approx g(\lambda^{(0)}) + Dg(\lambda^{(0)}) * (\lambda - \lambda^{(0)})$. Dies entspricht der verallgemeinerten Tangentengleichung mit

$$\tilde{E}(\lambda) = \|\underbrace{g(\lambda^{(0)})}_{\widetilde{y}} + \underbrace{Dg(\lambda^{(0)})}_{-\widetilde{\lambda}} \cdot \underbrace{(\lambda - \lambda^{(0)})}_{\delta} \|_{2}^{2}$$

Berechnung: Berechne Funktion und deren Jacobi-Matrix $g(\lambda) := \gamma - f(\lambda),$ $Dg(\lambda)$

Für k = 0,1 ...:

Schritt 1: Berechne $\delta^{(k)}$ als Lösung des linearen Ausgleichsproblems

$$min \|g(\lambda^{(k)} + Dg(\lambda^{(k)}) \cdot \delta^{(k)}\|_{2}^{2}$$

d.h. löse konkret das folgende Normalgleichungssystem nach $\delta^{(k)}$ auf

$$Dg\big(\lambda^{(k)}\big)^TDg\big(\lambda^{(k)}\big)\delta^{(k)} = -Dg\big(\lambda^{(k)}\big)^T \cdot g(\lambda^{(k)})$$

Dies wird am stabilsten mit der QR-Zerlegung von $Dg(\delta^{(k)})$ erreicht

$$Dq(\lambda^{(k)}) = Q^{(k)}R^{(k)}, \qquad R^{(k)}\delta^{(k)} = -Q^{(k)T}q(\lambda^{(k)})$$

Schritt 2: (Nur beim gedämpften Gauss-Newton)

Finde das minimale $p \in \{0,1,...,p_{max}\}$ mit

$$\left\|g\underbrace{\left(\lambda^{(k)} + \frac{\delta^{(k)}}{2^p}\right)}_{\lambda^{(k+1)}}\right\|_2^2 < \left\|g(\lambda^{(k)})\right\|_2^2$$

Falls kein minimales p gefunden werden kann, rechne mit p = 0 weiter

Schritt 3: (Gauss-Newton)

$$\lambda^{(k+1)} = \lambda^{(k)} + \delta^{(k)}$$

Schritt 3: (gedämpftes Gauss-Newton)

$$\lambda^{(k+1)} = \lambda^{(k)} + \frac{\delta^{(k)}}{2^p}$$

Gedämpfte verfahren konvergiert für mehr Startvektoren, jedoch ist es nicht garantiert, daher meist extra Abbruchkriterium.

Z.B:
$$\parallel rac{oldsymbol{\delta}^{(k)}}{2^p} \parallel_2 < TOL$$

Gauss-Newton-Verfahren-Beispiel

$$f(a,b) = \begin{pmatrix} ae^{bx_1} \\ \vdots \\ ae^{bx_5} \end{pmatrix}, \quad y = \begin{pmatrix} 3 \\ \vdots \\ 0.05 \end{pmatrix}, \quad x = \begin{pmatrix} 0 \\ \vdots \\ 4 \end{pmatrix}, \quad \lambda_0 = \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ -1.5 \end{pmatrix}$$

Funktion g(a, b) und Jacobi-Matrix Df(a, b) bilden

$$g(a,b) = y - f(a,b) = \begin{pmatrix} y_1 - ae^{bx_1} \\ \vdots \\ y_5 - ae^{bx_5} \end{pmatrix} = \begin{pmatrix} 3 - 1 \\ \vdots \\ 0.05 - e^{-6} \end{pmatrix}$$

$$Dg(a,b)\begin{pmatrix} -1 & 0 \\ -e^{b\cdot 1} & -1ae^{b\cdot 1} \\ -e^{b\cdot 2} & -2ae^{b\cdot 2} \\ -e^{b\cdot 3} & -3ae^{b\cdot 3} \\ -e^{b\cdot 4} & -4ae^{b\cdot 4} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -e^{-1.5} & -1e^{-1.5} \\ -e^{-3} & -2e^{-3} \\ -e^{-4.5} & -3e^{-4.5} \\ -e^{-6} & -4e^{-6} \end{pmatrix}$$

- Auflösen nach $\delta^{(k)}$ $R^{(0)}\delta^{(0)} = -Q^{(0)T}g(\lambda^{(0)})$

$$\delta^{(0)} = \binom{1.99}{1.89}$$

Schritt 3:

• Lambda berechnen $\lambda^{(k+1)} = \lambda^{(k)} + \delta^{(k)}$

$$\lambda^{(1)} = \lambda^{(0)} + \delta^{(0)} = \begin{pmatrix} 1 \\ -15 \end{pmatrix} + \begin{pmatrix} 1.99 \\ 1.89 \end{pmatrix} = \begin{pmatrix} 2.99 \\ 0.392 \end{pmatrix}$$

Sei
$$a=egin{bmatrix} -0.6065 \ -0.3679 \end{bmatrix}$$
 , dann ist:

$$\|a\| = \sqrt{(-0.6065)^2 + (-0.3679)^2} pprox 0.7095$$
 $v = a + ext{sign}(-0.6065) \cdot \|a\| \cdot e_1 = a - \|a\| \cdot e_1 = egin{bmatrix} -1.3160 \ -0.3679 \end{bmatrix}$ $u = rac{v}{\|\mu_1\|} pprox egin{bmatrix} -0.9573 \ -0.2679 \end{bmatrix}$

Householder-Matrix:

$$Q^{(0)} = I - 2uu^T = egin{bmatrix} -0.8328 & -0.5130 \ -0.5130 & 0.8564 \end{bmatrix}$$

$$R^{(0)} = Q^{(0)} Dg = egin{bmatrix} 0.6940 & 0.8829 \ 0 & -0.3187 \end{bmatrix}$$

Schritt 3: Berechne $-Q^{(0)T}q(\lambda^{(0)})$:

$$g(\lambda^{(0)}) = egin{bmatrix} 1.8935 \\ 0.6321 \end{bmatrix}, \quad Q^{(0)T}g pprox egin{bmatrix} -1.9012 \\ -0.4302 \end{bmatrix} \Rightarrow -Q^{(0)T}g pprox egin{bmatrix} 1.9012 \\ 0.4302 \end{bmatrix}$$

Schritt 4: Rückwärtseinsetzen für $R^{(0)}\delta^{(0)}=-Q^{(0)T}g$

$$\begin{bmatrix} 0.6940 & 0.8829 \\ 0 & -0.3187 \end{bmatrix} \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix} = \begin{bmatrix} 1.9012 \\ 0.4302 \end{bmatrix}$$

Zweite Zeile

$$-0.3187\delta_2 = 0.4302 \Rightarrow \delta_2 = -1.3500$$

QR-Zerlegung

Eine Matrix $Q \in \mathbb{R}^{n \times n}$ heisst **orthogonal**, wenn $Q^T \cdot Q = I_n$ ist. Dabei ist I_n die $n \times n$ Einheitsmatrix. Man sagt auch kurz, Q ist eine Orthogonalmatrix.

Lösen von LGS: A = QR; $Ax = b \Rightarrow QRx = b \Rightarrow Q^Tb = y$ und Rx = y**Eigenwert**: $A_k = Q_k R_k und A_{k+1} = R_k Q_k$

Berechnung durch Householder-Matrix: $H = I_n - \frac{2}{uTu} 2uu^T$ oder wenn nor-

 $miert: = I_n - 2uu^T$

$$u = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \qquad \tilde{u} = \frac{u}{|u|} = \frac{1}{\sqrt{14}} \cdot \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

$$H = l_n - 2\tilde{u}\tilde{u}^T = \begin{pmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{pmatrix} - 2 \cdot \frac{1}{14} \cdot \begin{pmatrix} 1\\2\\3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

QR-Beispiel: Falls Matrix grösser, wiederholen aber mit $A_2, A_3, ...$

$$H_1 \cdot A_1 = H_1 \cdot \underbrace{\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}}_{A_1} = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \rightarrow \underbrace{\begin{pmatrix} * & * \\ * & * \\ * & * \end{pmatrix}}_{A_2}$$

$$a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, \qquad e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

- 1. $v_1 \coloneqq a_1 + sign(a_{11}) \cdot |a_1| \cdot e_1$
- 2. $u_1 := \frac{1}{1 + 1} \cdot v_1$
- 3. $H_1 := I_n 2u_1u_1^T = Q_1$ $H_2 \cdot A_2 = H_2 \cdot \underbrace{\begin{pmatrix} * & * \\ * & * \end{pmatrix}}_{} = \underbrace{\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}}_{}$

$$Q_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & H_2 & H_2 \\ 0 & H_2 & H_2 \end{pmatrix}$$

$$Q := Q_1^T \cdot Q_2^T, \qquad R := \underbrace{Q_2 \cdot Q_1}_{Q^{-1}} \cdot A$$

Jacobi Matrix

Gegeben ist die vektorwertige Funktion:

$$f(\lambda) = egin{bmatrix} \lambda_1 e^{\lambda_2 x_1} \ \lambda_1 e^{\lambda_2 x_2} \end{bmatrix}, \quad g(\lambda) = y - f(\lambda)$$

Dann gilt:

$$Df(\lambda) = egin{bmatrix} rac{\partial f_1}{\partial \lambda_1} & rac{\partial f_1}{\partial \lambda_2} \ rac{\partial f_2}{\partial \lambda_1} & rac{\partial f_2}{\partial \lambda_2} \end{bmatrix} = egin{bmatrix} e^{\lambda_2 x_1} & \lambda_1 x_1 e^{\lambda_2 x_1} \ e^{\lambda_2 x_2} & \lambda_1 x_2 e^{\lambda_2 x_2} \end{bmatrix}$$

$$Dg(\lambda) = rac{d}{d\lambda}(y-f(\lambda)) = -Df(\lambda) = egin{bmatrix} -e^{\lambda_2 x_1} & -\lambda_1 x_1 e^{\lambda_2 x_1} \ -e^{\lambda_2 x_2} & -\lambda_1 x_2 e^{\lambda_2 x_2} \end{bmatrix}$$

Beide Matrizen sind 2×2 ; Df beschreibt die Sensitivität von f, Dg die des Residuums

Problemstellung

Es soll das bestimme Integral einer Funktion bestimmt werden.

Quadraturverfahren: $I(f) = \sum_{i=1}^{n} a_i f(x_i)$; $I(f) = \int_a^b f(x) dx$

Rechteck/Tapezregel

$$Rf = f\left(\frac{a+b}{2}\right) \cdot (b-a), \qquad Tf = \frac{f(a)+f(b)}{2} \cdot (b-a)$$

Numerische Berechnungen auf einem Intervall [a, b]

- Anzahl Subintervalle $[x_i, x_{i+1}]$
- Breite der Subintervalle $[x_i, x_{i+1}]$
- $x_i = a + i \cdot h$
- $[x_0, ..., x_n]$ $x_0 = a, x_n = b$

summierte Rechtecksregel

$$Rf(h) = h \cdot \sum_{i=0}^{n-1} f\left(x_i + \frac{h}{2}\right)$$

summierte Trapezregel

$$Tf(h) = h \cdot \left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i)\right)$$

Simpson-Regel

$$Sf(h) = \frac{h}{3} \left(\frac{1}{2} f(a) + \sum_{i=1}^{n-1} f(x_i) + 2 \sum_{i=1}^{n} f\left(\frac{(x_{i-1} + x_i)}{2} \right) + \frac{1}{2} f(b) \right)$$

Fehlerabschätzung für summierte:

$$|\int_{a}^{b} f(x) dx - Rf(h)| \leq \frac{h^{2}}{24} (b - a) \cdot \max_{x \in [a,b]} |f''(x)|$$

$$|\int_{a}^{b} f(x) dx - Tf(h)| \leq \frac{h^{2}}{12} (b - a) \cdot \max_{x \in [a,b]} |f''(x)|$$

$$|\int_{a}^{b} f(x) dx - Sf(h)| \leq \frac{h^{4}}{2880} (b - a) \cdot \max_{x \in [a,b]} |f^{(4)}(x)|$$

Beispiel max. Fehler von 0.1 auflösen bei Trapez:

$$\underbrace{\left| \int_a^b f(x) \, dx - T_f(h) \right|}_{ ext{Fehler}} \ \le \ 0.1. \ rac{b-a}{12} \ M \ h^2 \ \le \ 0.1,$$

< Dreht sich bei: * oder : mit negativer Zahl

Numerische Integration

Gauss-Formeln

Die Intervalle h müssen nicht immer gleich gross sein, sie werden hier so gewählt, das die Fehlerordnung möglichst klein ist.

Die Gauss Formeln für $n=1,\,2,\,3$ für $\int_{-b}^{b}f(x)dx\approx \frac{b-a}{2}\sum_{i=1}^{b}a_{i}f(x_{i})$ lauten: Hier wird aber eine spezielle Variante der summierten Tapezregel

- n = 1: $G_1 f = (b a) \cdot f(\frac{b+a}{2})$
- -n = 2: $G_2 f = \frac{b-a}{2} \left[f \left(-\frac{1}{\sqrt{2}} \cdot \frac{b-a}{2} + \frac{b+a}{2} \right) + f \left(\frac{1}{\sqrt{2}} \cdot \frac{b-a}{2} + \frac{b+a}{2} \right) \right]$
- -n = 3: $G_3 f = \frac{b-a}{2} \left[\frac{5}{9} \cdot f \left(-\sqrt{0.6} \cdot \frac{b-a}{2} + \frac{b+a}{2} \right) + \frac{8}{9} \cdot f \left(\frac{b+a}{2} \right) \right]$
 - $+\frac{b-a}{2}\left[\frac{5}{6}\cdot f\left(\sqrt{0.6}\cdot\frac{b-a}{2}+\frac{b+a}{2}\right)\right]$

Vektornormen/Matrixnormen

Für Vektoren $x = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$:

- 1-Norm, Summennorm : $\parallel \boldsymbol{x} \parallel_1 = \sum \mid x_i \mid$
- 2-Norm, euklidische Norm : $\|\boldsymbol{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- ∞ -Norm, Maximumnorm : $\parallel \boldsymbol{x} \parallel_{\infty} = \max_{i=1,...,n} \mid x_i \mid$

Für $n \times$

n Matrix mit Vektornormen gibt es Matrixnormen:

- 1-Norm, Spaltensummennorm : $\parallel \boldsymbol{A} \parallel_1 = \max_{j=1,...,n} \sum_{i=1}^{n} \mid a_{ij} \mid$
 - 2-Norm, Spektralnorm : $\|\mathbf{A}\|_2 = \sqrt{\rho(\mathbf{A}^T \mathbf{A})}$
- ∞ -Norm, Zeilensummennorm : $\parallel \pmb{A} \parallel_{\infty} = \max_{i=1,\dots,n} \sum_{i=1}^{\infty} \mid a_{ij} \mid$

Normalgleichungssystem – Design Matrix A für poly

$$f(x)=a_0\phi_0(x)+a_1\phi_1(x)+\cdots+a_n\phi_n(x)$$

Dann besteht die Designmatrix A aus den Funktionsauswertungen $\phi_i(x_i)$:

$$A = egin{bmatrix} \phi_0(x_1) & \phi_1(x_1) & \dots & \phi_n(x_1) \ \phi_0(x_2) & \phi_1(x_2) & \dots & \phi_n(x_2) \ dots & dots & \ddots & dots \ \phi_0(x_m) & \phi_1(x_m) & \dots & \phi_n(x_m) \end{bmatrix}$$

Romberg-Extrapolation

Die summierte Trapezregel für die Approximation des Integrals $\int_a^b f(x) dx$ mit gleichmäßigem Gitter der Schrittweite $h = \frac{b-a}{r}$ lautet:

$$T(f,h)=rac{h}{2}\left[f(a)+2\sum_{k=1}^{n-1}f(a+kh)+f(b)
ight]$$

verwendet, um Fehler zu verkleinern mit Iteration.

Die entsprechende summierte Trapezregel lautet dann für ein gegebenes j:

$$T_{j0} = Tf(h_j) = h_j \left(rac{f(a) + f(b)}{2} + \sum_{i=1}^{2^j-1} f\left(a + i \cdot h_j
ight)
ight)$$

Parameter:

- $h_i = \frac{b-a}{2i}$: Schrittweite
- $n=2^j$: Anzahl der Teilintervalle
- T_{i0} : erste Spalte der Romberg-Tabelle (Trapezregel-Näherung bei Schrittweite h_i)

Diese Werte T_{i0} werden rekursiv zu genaueren Näherungen T_{ik} extrapoliert. Die Rekursion lautet:

$$T_{jk} = rac{4^k \cdot T_{j+1,k-1} - T_{j,k-1}}{4^k - 1}$$

Bedeutung:

- $T_{j,k}$: verbesserte Näherung mit Schrittweite $h_j = \frac{b-a}{2^j}$ und Extrapolationsstufe k
- $T_{i,k-1}$: vorherige Näherung mit derselben Schrittweite h_i
- $T_{i+1,k-1}$: vorherige Näherung mit halbierter Schrittweite $h_{i+1} = \frac{h_i}{2}$
- 4^k : kommt daher, dass der Fehler der Trapezregel $\mathcal{O}(h^2)$ ist und Richardson-Extrapolation auf einen Fehler $\mathcal{O}(h^{2k+2})$ zielt

Eliminierung des führenden Fehlerterms durch gewichtete Kombination zweier Näherungen. Der neue Wert T_{jk} hat eine um zwei höhere Fehlerordnung als $T_{j,k-1}$ oder $T_{j+1,k-1}$.

Interpretation:

- Spalte k=0: Trapezregel-Näherungen mit $h=rac{b-a}{2^j}$
- Diagonal nach rechts oben: Extrapolation auf höhere Genauigkeit
- ullet $T_{0,m}$: beste Näherung mit Schrittweite $h_m=rac{b-a}{2^m}$, Fehlerordnung $\mathcal{O}(h^{2m+2})$

Ti,0=Tapezregel, Ti,1=Simpson

Definition & Ordnung

Geben ist eine Gleichung, welche eine unbekannte Funktion und deren Ableitungen enthält, als Lösung ist die Funktion y selbst gesucht welche auf einem bestimmten Intervall definiert sein soll

1. Ordnung: Es kommt nur die erste Ableitung vor: $\frac{dy}{dt} = f(t, y(t))$

n-ter Ordnung:
$$y^{(n)}(x) = f(x, y(x), y'(x), ..., y^{(n-1)}(x))$$

Für die Ableitungen höherer Ordnung von y(x) gibt es verschieden Notationen:

- Lagrange-Notation (mit Strichen, resp. Hochzahlen in Klammern):

$$y'(x), y''(x), y'''(x), y^{(4)}(x), y^{(5)}(x), ..., y^{(n)}(x) \\$$

- Newton-Notation (mit Punkten)

$$\dot{y}(x), \ddot{y}(x), \dddot{y}(x), \dddot{y}(x), \dots$$

- Leibniz-Notation (mit Differential operator $\frac{d}{dx}$)

$$\frac{dy(x)}{dx}, \frac{d^2y(x)}{dx^2}, \frac{d^3y(x)}{dx^3}, \dots, \frac{d^ny(x)}{dx^n}$$

oder auch

$$\frac{d}{dx}y(x), \frac{d^2}{dx^2}y(x), \frac{d^3}{dx^3}y(x), ..., \frac{d^n}{dx^n}y(x)$$

Anfangswertproblem: Es werden noch zusätzliche Bedingungen gesetzt, um eine eindeutige Lösung zu bestimmen.

- 1. Ordnung: $Pig(x_0,y(x_0)ig)$ mit Anfangswert $y(x_0)$
- 2. Ordnung: $P(x_0, y(x_0))$ mit Steigung $y'(x_0) = m$ bei x_0

Fehlerordnung eines Verfahrens

 $\textbf{Lokaler Fehler} : \textit{Differenz nach einer } \textit{Iteration } y_{i+1} \textit{ und exaktem}$

Wert $y(x_{i+1})$ an der Stelle: $\varphi(x_i, h) \coloneqq |y(x_{i+1}) - y_{i+1}|$

Konsistenzordnung p, falls: $|\varphi(x_i, h)| \le C * h^{p+1}$ für kleine h und einer Konstante C > 0, welche von Differentialgleichung abhängt.

Globaler Fehler: Fehler nach n Iterationen $|y_n - y(x_n)|$

Konvergenzordnung p, falls: $|y(x_n) - y_n| \le C * h^P$

Wenn p \geq 1 dann strebt der globale Fehler gegen 0. Klassische Euler hat p=1, Mittelpunkt und modifizierte Euler p=2, 4RK p=4

Stabilität

Kann bei der Anwendung eines Verfahrens auf die DGL $y'=-\alpha y$ die numerische Lösung in der Form

$$y_{i+1} = g(h\alpha) \cdot y_i$$

geschrieben werden, so nennt man q(z) die Stabilitätsfunktion des Verfahrens (mit $z = h\alpha$).

Das offene Intervall $z \in (0,\alpha)$, in dem | g(z) |< 1 gilt, bezeichnet man als das Stabilitätsinterval des Verfahrens.

Wir betrachten die DGL

$$y' = -2.5y, \ y(0) = 1, \ x \in [0, 3.4].$$

Mit $\alpha=2.5$ gilt $\frac{2}{\alpha}=0.8$ und damit für eine stabile Lösung

$$0 < h < 0.8$$
.

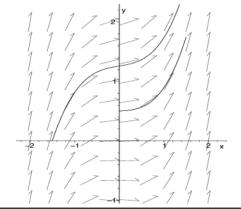
Differentialgleichung

Richtungsfelder

In der geometrischen form y' = f(x, y(x)) wird ein Punkt eingesetzt und die Steigung pro 1 berechnet. Für Lösung wird für einen Startwert eine Richtung gefolgt. Hier y(1.5) und y(0).

Beispiel:
$$y' = x^2 + 0.1 * y(x)$$

$$P(0.5,1) = 0.5^2 + 0.1 * 1 = 0.35$$



Modifizierte Euler-Verfahren

Führe das klassische Euler-Verfahren durch

$$x_{i+1} = x_i + h, \quad y_{i+1} = y_i + h \cdot f(x_i, y_i)$$

Berechne die Tangentensteigungen k_1 und k_2

$$k_1 = f(x_i, y_i), \qquad k_2 = f(x_{i+1}, y_{i+1})$$

Bilde den Durchschnitt der Steigungen und mache einen Schritt h ausgehend vom ursprünglichen Punkt (x_i, y_i)

$$x_{i+1} = x_i + h, \quad y_{i+1} = y_i + h \cdot \frac{k_1 + k_2}{2}$$

Runge-Kutta 4 und 3 Stufen(Heun)

$0 \\ \frac{1}{2} \\ \frac{1}{2} \\ 1$	$\begin{array}{c} \frac{1}{2} \\ 0 \\ 0 \end{array}$	$\frac{1}{2}$	1		0 $\frac{1}{3}$ $\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{3}$	
	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$		$\frac{1}{4}$	0	$\frac{3}{4}$

Euler-Verfahren

Es wird dem Richtungsfeld gefolgt. Es wird immer mit Abstand h zum nächsten Punkt gesprungen.

$$x_0 = a; x_i = a + ih,$$

 $i = 0, ..., n - 1; h = \frac{b - a}{n}$
 $x_{i+1} = x_i + h$
 $y_{i+1} = y_i + h * f(x_i, y_i)$

Mittelpunkt-Verfahren

Wie Euler aber es die Steigung wird nur für halbes h berechnet, dann ganzes h gesprungen mit dieser Steigung, Krümmung wird beachtet

$$x_{h/2} = x_i + \frac{h}{2}$$

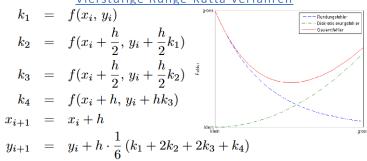
$$y_{h/2} = y_i + \frac{h}{2} \cdot f(x_i, y_i)$$

$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + h \cdot f(x_{h/2}, y_{h/2})$$

[0,10],
$$n = 2$$
, $y(0) = 2$, $h = \frac{10 - 0}{2} = 5$, $\frac{dy}{dx} = \frac{x^2}{y}$
Schritt 1: $x_1 = 0 + 5 = 5$, $y_2 = 2 + 5 * \frac{0^2}{2} = 2$
Schritt 2: $x_2 = 5 + 5 = 10$, $y_2 = 2 + 5 * \frac{5^2}{2} = 64.5$

Vierstufige Runge-Kutta Verfahren



S-stufige Runge-Kutta Verfahren

$$egin{array}{lll} k_n &=& f\left(x_i+c_nh,\,y_i+h\sum_{m=1}^{n-1}a_{nm}k_m
ight) & ext{f\"ur }n=1,...,s \ & y_{i+1} &=& y_i+h\sum_{n=1}^{s}b_nk_n & y_{i+1} &=& y_i+h\left(rac{1}{10}k_1+rac{4}{10}k_2+rac{4}{10}k_3+rac{1}{10}k_4
ight) \ & b_1=rac{1}{10}, & b_2=rac{4}{10}, & b_3=rac{4}{10}, & b_4=rac{1}{10}. \end{array}$$

Hierbei ist $s \in \mathbb{N}$ die Stufenzahl und a_{nm}, b_n, c_n sind Konstanten. Die Konsistenz- und Konvergenzordnung hängt von der Wahl dieser Konstanten ab.

Euler-Verfahren, $s = 1: \frac{\mathsf{U}}{\mathsf{U}}$

-	c_s	a_{s1} b_1	a_{s2} b_2	 $a_{s,s-1}$ b_{s-1}	b_s	klass. Runge-Kutta Verfahren, $s=4$: $\begin{bmatrix} 0 \\ 0.5 \\ 0.5 \\ 0 \end{bmatrix}$ 0.5 $\begin{bmatrix} 0 \\ 0.5 \\ 0 \end{bmatrix}$ 0 0.5 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 0 1 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 1 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 1 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 2 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 3 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 3 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
($\stackrel{:}{c}_n$	a_{n1}	a_{n2}	 $a_{n,n-1}$		Modifiziertes Euler-Verfahren, $s = 2 : \begin{array}{c c} 0 & \\ \hline 1 & 1 \\ \hline & 0.5 & 0.5 \end{array}$
	c_2	$a_{21} \\ a_{31}$	a_{32}			Mittelpunkt-Verfahren, $s=2: \begin{array}{c c} 0.5 & 0.5 \\ \hline 0 & 1 \\ \hline \end{array}$
	c_1					0

Rezept System erstellen

- 1. Es wird nach der n-ten Ableitung aufgelöst, mit Hilfsfunktionen bis n-1
- 2. Hilfsfunktion ableiten, dann einsetzen in die obere Gleichung
- 3. In Vektorieller Form aufschreiben und lösen Beispiel: Gegeben sei die Differentialgleichung 3. Ordnung

$$y''' + 5y'' + 8y' + 6y = 10e^{-x}$$

Mit der Anfangsbedingung

$$y(0) = 2$$
, $y'(0) = y''(0) = 0$

Auflösen nach der höchsten Ableitung

$$y''' = 10e^{-x} - 5y'' - 8y' - 6y$$

2. Einführen von Hilfsfunktionen z_1, z_2, z_3 bis zur zweiten Ableitung

$$z_1(x) = y(x)$$

$$z_2(x) = y'(x)$$

$$z_3(x) = y''(x)$$

3. Ableiten der Hilfsfunktionen

$$z'_{1} = y'(= z_{2})$$

$$z'_{2} = y''(= z_{3})$$

$$z'_{3} = y'''$$

$$= 10e^{-x} - 5y'' - 8y' - 6y$$

$$= 10e^{-x} - 5z_{3} - 8z_{2} - 6z_{1}$$

DGL in vektorieller Form schreiben

$$z' = \begin{pmatrix} z_1' \\ z_2' \\ z_3' \end{pmatrix} = \begin{pmatrix} z_2 \\ z_3 \\ 10e^{-x} - 5z_3 - 8z_2 - 6z_1 \end{pmatrix} = f(x, z),$$
$$z(0) = \begin{pmatrix} y(0) \\ y'(0) \\ y''(0) \end{pmatrix} = \begin{pmatrix} z_1(0) \\ z_2(0) \\ z_3(0) \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$$

Darstellung

Allgemeine Form: y' = f(x, y) mit $y(x_0) = y^{(0)}$. Hierbei ist y eine vektorwertige Funktion, also $y: \mathbb{R} \to \mathbb{R}^k$, d.h. ein Vektor mit k Funktionen

Darstellung der Lösung:
$$y(x) = \begin{pmatrix} y_1(x) \\ \dots \\ y_k(x) \end{pmatrix}$$
 dabei $y_i(x)$: $\mathbb{R} \to \mathbb{R}$

Vektorwertige Funktion:
$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^k \ mit \ f(x, y(x)) = \begin{pmatrix} f_1(x, y(x)) \\ \dots \\ f_k(x, y(x)) \end{pmatrix}$$

Komponentenschreibweise: Liste y_1' bis $y_k'(x) = f_k(x, y_1(x), ..., y_k(x))$

$$y'(x)=f(x,y(x))=egin{pmatrix} y_2(x) \ -y_1(x) \end{pmatrix}, \quad y(0)=egin{pmatrix} 0 \ 1 \end{pmatrix} egin{pmatrix} ext{startwert moglicits hand belief to S} \ ext{mit:} |rac{f(x)*f''(x)}{(f'(x))^2}| < 1^{E_{ ext{abs}}pprox |x_{n+1}-x_n|} \ ext{Vorsinfochtes Vorsinfochtes Vorsinfochtes} \end{pmatrix}$$

Systeme von DGL

Rezept System lösen

Ist ein Lösungsverfahren

$$x_{i+1} = x_i + h$$

$$y_{i+1} = y_i + Steigung \cdot h$$

Für die eindimensionale Gleichung

$$y'(x) = f(x, y(x)), y(x_0) = y_0$$

Definiert, so kann es völlig analog erweitert werden als

$$x_{i+1} = x_i + h$$

$$y^{(i+1)} = y^{(i)} + Steigung \cdot h$$

Für ein System

$$v' = f(x, v(x)) mit v(x_0) = v^{(0)}$$

Dabei werden ersetzt

- v' durch den Vektor v' der Abteilung der einzelnen Komponenten
- f(x, y(x)) durch die vektorwertige Funktion f(x, y(x)) und
- Die Anfangsbedingung $y(x_0) = y_0$ durch $y(x_0) = y^{(0)}$

$$y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix}, y' = \begin{pmatrix} y'_1(x) \\ y'_2(x) \\ \vdots \\ y'_n(x) \end{pmatrix}$$

$$f(x,y(x)) = \begin{pmatrix} f_1(x,y(x)) \\ f_2(x,y(x)) \\ \vdots \\ f_n(x,y(x)) \end{pmatrix}, y(x_0) = y^{(0)} = \begin{pmatrix} y_1(x_0) \\ y_2(x_0) \\ \vdots \\ y_n(x_0) \end{pmatrix}$$

$$z' = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} z_2 \\ z_3 \\ z_4 \\ -1.1z_4 + 0.1z_3 + 0.4z_1 + \sin x + 5 \end{pmatrix} = f(x, z)$$

$$z(0) = \begin{pmatrix} y(0) \\ y'(0) \\ y'(0) \\ y'(0) \end{pmatrix} = \begin{pmatrix} z_1(0) \\ z_2(0) \\ z_3(0) \\ z_3(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$$

$$h = 0.1,$$
 $y^{(0)} = (0, 2, 0, 0)^T,$ $x_0 = 0$

$$x_1 = x_0 + 0.1 = 0.1$$
, $y^{(i+1)} = y^{(i)} + Steigung$.

$$y^{(1)} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 0 \end{pmatrix} + 0.1 \cdot \begin{pmatrix} 2 \\ 0 \\ 0 \\ -1.1 \cdot 0 + 0.1 \cdot 0 + 0.4 \cdot 0 + \sin x_0 + 5 \end{pmatrix} = \begin{pmatrix} 0.2 \\ 2 \\ 0.5 \end{pmatrix}$$

Newton Verfahren

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Startwert möglichst nahe bei der Lösung, überprüfen

Vereinfachtes Verfahren: $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$

Umformungen der bestimmten Integrale

1. Ausgangs-ODE

$$m\,rac{dv}{dt} = -ig(5\,v^2 + 570\,000ig).$$

2. Separation der Variablen

$$rac{dv}{dt} = -rac{5\,v^2 + 570\,000}{m} \implies dt = -rac{m}{5\,v^2 + 570\,000}\,dv.$$

3. Bremszeit t_E

$$t_E = \int_{t=0}^{t_E} dt = \int_{v=100}^0 \Bigl(-rac{m}{5v^2 + 570\,000} \Bigr) \, dv.$$

Minuszeichen und Grenzvertauschung

$$\int_{100}^{0} -f(v) \, dv = \int_{0}^{100} f(v) \, dv,$$

$$t_E = \int_0^{100} rac{m}{5v^2 + 570\,000}\,dv.$$

4. Bremsweg x_E

$$x_E = \int_0^{t_E} v \, dt = \int_{v=100}^0 v \, \left(-\frac{m}{5v^2 + 570\,000} \right) dv = \int_0^{100} \frac{m \, v}{5v^2 + 570\,000} \, dv$$

$$\int_{b}^{a} f(x)dx = [F(x)]_{b}^{a} = F(a) - F(b)$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx ; \int_{a}^{a} f(x)dx = 0$$

$$\int (u'(x) * v(x)) * dx = u(x) * v(x) - \int (u(x) * v'(x)) * dx$$

$$\int_{a}^{b} (u' * v) * dx = [u(x) * v(x)]_{a}^{b} - \int_{a}^{b} (u(x) * v'(x)) * dx$$

$$a * \int f = \int a * f ; \int (f(x) \pm d(x)) = \int f(x) \pm \int d(x)$$

Unbestimmtes Integral

Potenzfunktionen

•
$$\int (x^{\alpha}) dx = \frac{1}{1+1} x^{\alpha+1} + \frac{1}{1+1} x^{\alpha+1}$$

•
$$\int \left(\frac{1}{x}\right) dx = \ln|x| + C$$

Exponential- und Logarithmusfunktionen

•
$$\int (e^x) dx = e^x + C$$
•
$$\int (a^x) dx = \frac{a^x}{\log x} + C$$

•
$$\int (\log_a(x)) dx = \frac{x \cdot \ln(x) - x}{\ln(a)} + C$$

•
$$\int (\log_a(x)) dx = \frac{1}{\ln(a)} + C$$

Geometrische Funktionen

• $\int (\cos(x)) dx = \sin(x) + C$

• $\int (\sin(x)) dx = -\cos(x) + C$

• $\int (\tan(x)) dx = -\ln|\cos(x)| + C$

 $\bullet \quad \int \left(\frac{1}{1+x^2}\right) dx = \arctan(x) + C$ $\bullet \quad \int \left(\frac{1}{\sqrt{1-x^2}}\right) dx = \arcsin(x) + C$ $\bullet \quad \int \left(-\frac{1}{\sqrt{1-x^2}}\right) dx = \arccos(x) + C$

Relative Extremal-Stelle: x_0 , -Punkt: $P_0 = (x_0, y_0)$, Extremum: y_0 **Berechnung**: $f'(x_0) = 0$ und $f''(x_0) \neq 0$, für x_0 : f' nach 0 aufl. Für Hochpunkt gefundenes x_0 in Originalfunktion einsetzen

Typenbestimmung: $f''(x_0) > 0 = Minimun$

$$f''(x_0) < 0 = Maximum$$

Newton Verfahren für NL-GLS

System

$$\begin{cases} f_1(x,y) = x^2 + y^2 - 4 = 0, \\ f_2(x,y) = x - y = 0. \end{cases}$$

Jacobi-Matrix

$$J(x,y) = egin{pmatrix} 2x & 2y \ 1 & -1 \end{pmatrix}.$$

Iteration

$$(x^{(n+1)},y^{(n+1)})=(x^{(n)},y^{(n)})+\delta^{(n)},\quad J(x^{(n)})\,\delta^{(n)}=-f(x^{(n)}).$$

Schritt n	$x^{(n)},y^{(n)}$	$f(x^{(n)})$	$J(x^{(n)})$	Lösung $\delta^{(n)}$	$x^{(n+1)}, y^{(n+1)}$
0	(1, 1)	$\left(-2,\;0\right)$	$\begin{pmatrix} 2 & 2 \\ 1 & -1 \end{pmatrix}$	$(0.5,\ 0.5)$	(1.5, 1.5)
1	(1.5, 1.5)	(0.5, 0)	$\begin{pmatrix} 3 & 3 \\ 1 & -1 \end{pmatrix}$	(-0.08333, -0.08333)	$\approx (1.4167, 1.4167)$

Nach zwei Schritten ist $(x,y) pprox (\sqrt{2},\sqrt{2}) pprox (1.4142,1.4142)$.

Euler Verfahren

Differenzialgleichung

$$\begin{cases} y'(t) = y(t) \\ y(0) = 1. \end{cases}$$

Euler-Schema

$$y_{n+1} = y_n + h f(t_n, y_n), \quad t_{n+1} = t_n + h.$$

Setze h=0,5. Dann gilt:

n	t_n	y_n	$f(t_n,y_n)=y_n$	$y_{n+1}=y_n+hy_n$	Genau: $e^{t_{n+1}}$
0	0,0	1,0000	1,0000	$1,0000+0,5\cdotp1,0000=\\1,5000$	1,6487
1	0,5	1,5000	1,5000	$1,5000+0,5\cdotp1,5000=\ 2,2500$	2,1170

Nach zwei Schritten ist $y_2 \approx 2.25$ statt des exakten $e^1 \approx 2.7183$.

Romberg-Extrapolation

$$I = \int_0^1 e^x dx = e - 1 \approx 1,71828.$$

Wir berechnen zunächst die Trapez-Approximationen

$$T(h) = rac{h}{2}ig(f(0) + 2\sum_{k=1}^{n-1}f(kh) + f(1)ig),$$

wobei h = (1-0)/n. Dann bauen wir die Romberg-Tabelle:

$$n$$
 h $T(h)$ $R_{n,1}=T(h)$ $R_{n,2}=rac{4R_{n,1}-R_{n/2,1}}{4-1}$ 1 1.0 $rac{1+e}{2}=1,85914$ 1,85914 - 2 0,5 $0.5[rac{1/2}{2}+e^{0.5}+rac{1/2}{2}]=1,75393$ 1,75393 $rac{4\cdot 1,75393-1,85914}{3}=1,71886$

Beispiele

Gauss

Für die Lösung von GLS.

Ziel: Umformung von Matrix zu oberen Dreiecksform **Formel**: Berechnen durch Rückwärtseinsetzen:

$$x_i=rac{b_i-\sum_{j=i+1}^n a_{ij}x_j}{a_{ii}},\quad i=n,n-1,\ldots,1$$

Transformation der Matrix:

$$z_j := z_j - \lambda z_i, \quad ext{mit } \lambda = rac{a_{ji}}{a_{ii}}, \; i < j.$$

Die Determinante wird berechnet als:

$$\det(A)=(-1)^l\prod_{i=1}^n\tilde{a}_{ii},$$

wobei \boldsymbol{l} die Anzahl der Zeilenvertauschungen ist. Beispiel: Gegeben sei das lineare Gleichungssystem

$$A = egin{pmatrix} 1 & 5 & 6 \ 7 & 9 & 6 \ 2 & 3 & 4 \end{pmatrix}, \quad b = egin{pmatrix} 29 \ 43 \ 20 \end{pmatrix}.$$

1. Eliminationsschritte:

Subtrahiere das 7-fache der ersten Zeile von der zweiten Zeile:

$$A_1 = egin{pmatrix} 1 & 5 & 6 \ 0 & -26 & -36 \ 2 & 3 & 4 \end{pmatrix}, \quad b_1 = egin{pmatrix} 29 \ -160 \ 20 \end{pmatrix}$$

· Subtrahiere 2-fache der ersten Zeile von der dritten Zeile:

$$A_2 = egin{pmatrix} 1 & 5 & 6 \ 0 & -26 & -36 \ 0 & -7 & -8 \end{pmatrix}, \quad b_2 = egin{pmatrix} 29 \ -160 \ -38 \end{pmatrix}$$

• Subtrahiere $\frac{7}{26}$ -fache der zweiten Zeile von der dritten Zeile:

$$A_3 = egin{pmatrix} 1 & 5 & 6 \ 0 & -26 & -36 \ 0 & 0 & 22 \end{pmatrix}, \quad b_3 = egin{pmatrix} 29 \ -160 \ 66 \end{pmatrix}$$

2. Rückwärtseinsetzen:

•
$$x_3 = \frac{66}{22} = 3$$

$$ullet x_2 = rac{-160 - (-36) \cdot 3}{-26} = 2$$

•
$$x_1 = \frac{29 - 5 \cdot 2 - 6 \cdot 3}{1} = 1.$$

Lösung:

$$x = egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}$$

Lineares Ausgleichsproblem

Daten

$$\{(x_i,y_i)\} = \{(1,2.0),\ (2,2.9),\ (3,4.1)\}.$$

Aufbau Matrix-Form

$$A = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 2.0 \\ 2.9 \\ 4.1 \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} b \\ a \end{pmatrix}.$$

Normalgleichunger

$$A^T A B = A^T y$$
.

Rechnung

$$A^TA = egin{pmatrix} 3 & 6 \ 6 & 14 \end{pmatrix}, \quad A^T\mathbf{y} = egin{pmatrix} 2.0 + 2.9 + 4.1 \ 1 \cdot 2.0 + 2 \cdot 2.9 + 3 \cdot 4.1 \end{pmatrix} = egin{pmatrix} 9.0 \ 20.3 \end{pmatrix}.$$

Löse

$$\begin{pmatrix} 3 & 6 \\ 6 & 14 \end{pmatrix} \begin{pmatrix} b \\ a \end{pmatrix} = \begin{pmatrix} 9.0 \\ 20.3 \end{pmatrix} \implies b \approx 1.0333, \quad a \approx 1.0333.$$

Ergebnis

$$\hat{y} = 1.0333 + 1.0333 x.$$

Multipliziere Gleichung 1 mit 2 und subtrahiere von Gleichung 2:

$$6b + 14a - (6b + 12a) = 20.3 - 18.0 \implies 2a = 2.3 \implies a = 1.15$$

Setze a in Gleichung 1 ein:

$$3b + 6 \cdot 1.15 = 9.0 \implies 3b = 9.0 - 6.9 = 2.1 \implies b = 0.7.$$

Wenn dein Parameter **nur** vor x, vor einer bekannten Funktion oder als Summand steht (z. B. y = ax + b, $y = a\sin(x) + b$), dann ist das lineare Ausgleichsproblem anwendbar.

Sobald dein Parameter selbst Teil einer nicht-linearen Funktion ist (z. B. $\cos(a)$, a^2 , e^a , $\frac{1}{x^a}$), ist das Problem nicht mehr linear in den Parametern.

Lagrange Interpolationsformel

Interpolation durch die 3 Punkte (0,1), (1,3) und (2,2) (n=2):

$$\begin{split} l_0(x) &= \frac{(x-1)(x-2)}{(0-1)(0-2)} = \frac{(x-1)(x-2)}{2}, \\ l_1(x) &= \frac{(x-0)(x-2)}{(1-0)(1-2)} = -\frac{x(x-2)}{1}, \\ l_2(x) &= \frac{(x-0)(x-1)}{(2-0)(2-1)} = \frac{x(x-1)}{2}. \end{split}$$

Damit

$$\mathcal{L}(x) = 1 \cdot l_0(x) + 3 \cdot l_1(x) + 2 \cdot l_2(x)$$

= $\frac{(x-1)(x-2)}{2} - 3\frac{x(x-2)}{1} + 2\frac{x(x-1)}{2}$.

Newton Verfahren

Wir wollen $\sqrt{2}$ finden, also die Lösung von

$$f(x) = x^2 - 2 = 0.$$

Hier ist f'(x)=2x. Mit Startwert $x_0=1$ erhält man:

$$\begin{split} x_1 &= 1 - \frac{1^2 - 2}{2 \cdot 1} = 1 - \frac{-1}{2} = 1,5, \\ x_2 &= 1,5 - \frac{1,5^2 - 2}{2 \cdot 1,5} = 1,5 - \frac{0,25}{3} \approx 1,4167, \\ x_3 &= 1,4167 - \frac{1,4167^2 - 2}{2 \cdot 1,4167} \approx 1,4142. \end{split}$$

Nach drei Schritten liegt man schon bei

$$x_3 pprox 1,4142,$$

Ableiten

 $w(x,t) = \sin(x+ct)$

w partiell nach t ableiten:

$$\begin{aligned} \frac{\partial w}{\partial t} &= c * \cos(x + ct) \\ \frac{\partial}{\partial t} (c * \cos(x + ct)) &= c^2 * - \sin(x + ct) \end{aligned}$$

w partiell nach x ableiten:

$$\frac{\partial w}{\partial x} = \cos(x + ct)$$
$$\frac{\partial}{\partial x}(\cos(x + ct)) = -\sin(x + ct)$$

Überprüfung auf Wellengleichung:

$$\begin{split} \frac{\partial^2 w}{\partial t^2} &= c^2 * - \sin(x + ct) \\ \frac{\partial^2 w}{\partial x^2} &c^2 = -\sin(x + ct) = > \frac{\partial^2 w}{\partial x^2} = -\sin(x + ct) * c^2 \end{split}$$

Die Funktion $w(x,t) = \sin(x+ct)$ erfüllt die Wellengleichung

$$v(x,t) = \sin(x + ct) + \cos(2x + 2ct)$$

v partiell nach t ableiten:

$$\begin{split} \frac{\partial v}{\partial t} &= c * \cos(x + ct) + 2c * - \sin(2x + 2ct) \\ \frac{\partial}{\partial t} &= (c * \cos(x + ct) + 2c * - \sin(2x + 2ct)) = c^2 * - \sin(x + ct) + 4c^2 * - \cos(2x + 2ct) \end{split}$$

v partiell nach x ableiter

$$\begin{aligned} \frac{\partial v}{\partial x} &= \cos(x+ct) - 2(\sin(2x+2ct)) \\ \frac{\partial}{\partial t} &= \left(\cos(x+ct) - 2(\sin(2x+2ct))\right) = -\sin(x+ct) - 4\cos(2x+2ct) \end{aligned}$$

Überprüfung auf Wellengleichung

$$\frac{\partial^2 w}{\partial t^2} = c^2 * -\sin(x + ct) + 4c^2 * -\cos(2x + 2ct) = (-\sin(x + ct) - 4 * \cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} * c^2 = -\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(2x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4\cos(x + 2ct)) * c^2 \frac{\partial^2 w}{\partial x^2} = (-\sin(x + ct) - 4$$

Die Funktion v(x,t) = sin(x + ct) + cos(2x + 2ct) erfüllt die Wellengleichung

<u>Linearisieren</u>

Für Funktion $f(x) = x^2$

$$g(x) = f(x^{(0)}) + f'(x^{(0)})(x - x^{(0)}) = 1 + 2(x - 1).$$

$$f(x_1,x_2) = egin{pmatrix} f_1(x_1,x_2) \ f_2(x_1,x_2) \end{pmatrix} = egin{pmatrix} x_1^2 + x_2 \ x_1 \, x_2 \end{pmatrix}$$

Wir linearisiseren um den Punkt $(x_1^{(0)}, x_2^{(0)}) = (1, 2)$.

1. Jacobi-Matrix berechnen

$$Df(x_1,x_2) = egin{pmatrix} rac{\partial f_1}{\partial x_1} & rac{\partial f_1}{\partial x_2} \ rac{\partial f_2}{\partial x_1} & rac{\partial f_2}{\partial x_2} \end{pmatrix} = egin{pmatrix} 2x_1 & 1 \ x_2 & x_1 \end{pmatrix}.$$

2. Am Punkt auswerter

$$f(1,2)=egin{pmatrix}1^2+2\1\cdot2\end{pmatrix}=egin{pmatrix}3\2\end{pmatrix},\quad Df(1,2)=egin{pmatrix}2\cdot1&1\2&1\end{pmatrix}=egin{pmatrix}2&1\2&1\end{pmatrix}.$$

3 Linearisierung

Für
$$\mathbf{x} = (x_1, x_2)^T$$
 gilt in der Umgebung von $\mathbf{x}^{(0)} = (1, 2)^T$

$$g(\mathbf{x}) = f(\mathbf{x}^{(0)}) + Df(\mathbf{x}^{(0)}) \left(\mathbf{x} - \mathbf{x}^{(0)}\right) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 - 1 \\ x_2 & 2 \end{pmatrix}.$$

Schreibt man's aus:

$$q(x_1, x_2) = \left(3 + 2(x_1 - 1) + 1(x_2 - 2)\right)$$

Splinefunktion

Zu den folgenden Stützpunkten soll die natürliche kubische Splinefunktion bestimmt werden, d.h. bestimmen Sie die Koeffizienten a_i,b_i,c_i,d_i der kubischen Polynome S_i für i=0,1,2 und geben Sie die $S_i(x)$ explizit an.

l	i	0	1	2	3	Berechnung
l	xi	4	6	8	10	gegeben
l	yi	6	3	9	0	gegeben
l	ai	6	3	9	0	ai = yi
	bi	-3,2	1,9	0,1		$bi = \frac{y_{i+1} - y_i}{h_i} - \frac{h_i}{3} (c_{i+1} + 2 * c_i)$
l	ci	0	2,55	-3,45	0	Siehe unten
	di	0,425	-1	0,575		$di = \frac{1}{3 * h_i} * (h_{i+1} - c_i)$
ı	hi	2	2	2	2	hi = xi +1 -xi

Berechnung ci:

$$A = \begin{pmatrix} 2 * (h_0 + h_1) & h_1 \\ h_1 & 2 * (h_2 + h_1) \end{pmatrix} = \begin{pmatrix} 8 & 2 \\ 2 & 8 \end{pmatrix}$$

$$Z = \begin{pmatrix} 3 * (\frac{y_2 - y_1}{h_1}) & 3 * (\frac{y_1 - y_0}{h_0}) \\ 3 * (\frac{y_3 - y_2}{h_2}) & 3 * (\frac{y_2 - y_1}{h_1}) \end{pmatrix} = \begin{pmatrix} 13.5 \\ -22.5 \end{pmatrix}$$

$$C = \begin{pmatrix} 8 & 2 & 13.5 \\ 3 & 2.25 & 1.25 \end{pmatrix} \rightarrow C = \begin{bmatrix} 0.2.55, -3.45, 0 \end{bmatrix}$$

Berechnung S:

$$\begin{split} S_n &= a + b(x - x_n) + c(x - x_n)^2 + d(x - x_n)^3 \\ S_0 &= 6 - 3.2(x - 4) + 0 + 0.425(x - 4)^3 \\ S_1 &= 3 + 1.9(x - 6) + 2.55(x - 6)^2 - (x - 6)^3 \\ S_2 &= 9 + 0.1(x - 8) - 3.45(x - 8)^2 + 0.575(x - 8)^3 \\ & \frac{i}{x_i} \frac{0}{0.2} \frac{2}{6} \\ & y_i = 0.1 & 0.9 & 0.1 \end{split}$$

Da sich die Demo widerholt und ein fliessender Übergang gewünscht ist, verwenden sie für die Bestimmung des Pfades kubische Splineinterpolation mit natürlichen Randbedingungen:

$$\begin{split} S_0(x) &= a_0 + b_0(x-x_0) + c_0(x-x_0)^2 + d_0(x-x_0)^3 & \text{mit} \quad x \in [x_0, x_1], \text{ und} \\ S_1(x) &= a_1 + b_1(x-x_1) + c_1(x-x_1)^2 + d_1(x-x_1)^3 & \text{mit} \quad x \in [x_1, x_2] \end{split}$$

$$fig((x_1,x_2)ig) = egin{pmatrix} x_2 \ 100 - 80\,x_2 - 2500\,x_1 \end{pmatrix}.$$

1. " $\mathbf{k_1}$ " bei $t_0=0,\;x^{(0)}=(0,0)$

$$k_1 = fig(x^{(0)}ig) = egin{pmatrix} 0 \ 100 - 80 \cdot 0 - 2500 \cdot 0 \end{pmatrix} = egin{pmatrix} 0 \ 100 \end{pmatrix}.$$

2. Zwischenwe

$$x^{(*)} = x^{(0)} + rac{h}{2}\,k_1 = inom{0}{0} + 0.005 \cdot inom{0}{100} = inom{0}{0.5}$$

3. " k_{z} " bei $t=t_{0}+rac{h}{2},\;x=x^{(*)}$:

$$k_2 = f(x^{(*)}) = egin{pmatrix} x_2^{(*)} \\ 100 - 80 \, x_2^{(*)} - 2500 \, x_1^{(*)} \end{pmatrix} = egin{pmatrix} 0.5 \\ 100 - 80 \cdot 0.5 - 2500 \cdot 0 \end{pmatrix} = egin{pmatrix} 0.5 \\ 60 \end{pmatrix}.$$

4. Neuer Wer

$$x^{(1)} = x^{(0)} + h \, k_2 = egin{pmatrix} 0 \ 0 \end{pmatrix} + 0.01 \cdot egin{pmatrix} 0.5 \ 60 \end{pmatrix} = egin{pmatrix} 0.005 \ 0.6 \end{pmatrix}$$

Ableiten

Betrachten Sie die folgende DGL

$$\frac{dy}{dx} = \frac{x^2}{y}$$

auf dem Intervall $0 \le x \le 1.4$ mit y(0) = 2. Lösen Sie die DGL manuell mit

- (a) dem Euler-Verfahren mit h = 0.7.
- (b) dem Mittelpunkt-Verfahren mit h = 0.7.
- (c) dem modifizierten Euler-Verfahren mit h=0.7.

Die exakte Lösung der DGL ist $y(x)=\sqrt{\frac{2x^3}{3}+4}$. Berechnen Sie für (a) - (c) jeweils den absoluten Fehler $|y(x_i)-y_i|$ für jedes x_i .

a)

i	$x_i => x_n = x_0 + n * h$	$y_i = y_{n+1} = y_n + h * f(x_i, y_i)$	$f(x_i, y_i) \Rightarrow \frac{x^2}{y}$
0	0	2	0
1	0.7	2	0.245
2	1.4	2.1715	-

Absoluter Fehler

x_i	Fehler
1	0.0564
2	0.2429

b) Erste Berechnung:

$$x_{\frac{h}{2}} = 0 + \frac{0.7}{2} = 0.35$$

$$y_{\frac{h}{2}} = 2 + 0.35 * \frac{0^2}{2} = 2$$

$$x_{1} = 0 + 0.7 = 0.7$$

$$y_{1} = 2 + 0.7 * \frac{0.35^2}{2} = 2.042875$$

Zweite Berechnung:

$$x_{\frac{h}{2}} = 0.7 + \frac{0.7}{2} = 1.05$$

$$y_{\frac{h}{2}} = 2.042875 + 0.35 * \frac{0.7^2}{2.042875} = 2.12683$$

$$x_{2} = 0.7 + 0.7 = 1.4$$

$$y_{2} = 2.042875 + 0.7 * \frac{1.05^2}{2.12683} = 2.40574$$

Absoluter Fehler

x_i	Fehler
1	0.0135
2	0.0087

C) Erste Berechnung:

$$k_{1,0} = \frac{0^2}{2} = 0$$

$$Euler: y_1 = 2 + 0.7 * 0 = 2$$

$$x_1 = 0.7$$

$$k_{2,0} = \frac{0.7^2}{2} = 0.245$$

$$y_1 = 2 + 0.7 * \frac{0.245}{2} = 2.08575$$

Zweite Berechnung:

$$\begin{split} k_{1,1} &= \frac{0.49}{2,08575} \\ Euler: y_2 &= 2,08575 + 0.7 * \frac{0.49}{2,08575} \approx 2,2502 \\ x_2 &= 1.4 \\ k_{2,1} &\approx \frac{1.4^2}{2,2502} \approx 0,871034 \\ y_2 &\approx 2,08575 + 0.7 * \frac{0.49}{2,08575} + 0,871034 \\ &\approx 2,47284 \end{split}$$

Absoluter Fehler

x_i	Fehler
1	0.0294
2	0.0584