Zusammenfassung FTH 1

Version: 17.11.2025

Druck Umrechnungen

-	
1 Bar	10^5 Pa
1 Torr / (mmHg)	1.3332*10^2 Pa
1 ATM	1.0133*10^5 Pa
1 PSI	6.8948*10^3 Pa
1 mmH₂O	9.80665 Pa

Dezimale SI-Präfixe

10 ³ = Kilo = k	10 ⁻³ = Milli = m
10 ⁶ = Mega = M	$10^{-6} = Mikro = \mu$
10 ⁹ = Giga = G	10 ⁻⁹ = Nano = n

Hydrostatisches Druckgesetz

Höhendruck

$$p(z) = p_0 + g * \rho * z$$

p(z) [pa] Druck auf Höhe z

p₀ [pa] Druck auf Fluid Oberfläche

$$g\left[\frac{m}{s^2}\right]$$
 Erdbeschleunigung

$$\rho\left[\frac{kg}{m^3}\right]$$
 Dichte Fluid

Druck U-Rohr

$$p_{links} = p_{Rechts}$$

Höhe kleinere Seite und Säulen berechnen

Kontinuitätsgleichung

Massestrom und Kontinuität

$$\begin{split} \dot{m} &= \rho_1*w_1*A_1 = \rho_2*w_2*A_2\\ \dot{m} &\left[\frac{kg^3}{h};\frac{kg^3}{s}\right] Massenstrom \end{split}$$

A [m²] Fläche des Rohrs

$$w\left[\frac{m}{h}, \frac{m}{s}\right]$$
 Fliessgeschwindigkeit

Volumenstrom

$$Q = \frac{\dot{m}}{a} = w * A$$

$$Q\left[\frac{m^3}{h}; \frac{m^3}{s}\right] Volumenstrom\left(\frac{m^3}{h} = \frac{m^3}{s} * 3600\right)$$

Reynoldszahl

$$R_e = \frac{w * d}{v}$$

R_e[-]Reynoldszahl Kritisch für Wasser im Rohr 2300 R_{eKrit} : Kugel 3 * 10⁵, Flache Ebene 5 * 10⁵

Viskosität dynamisch [Kg/(m*s)]

$$\eta = \frac{32 * h * M}{\pi * \omega * D^4}$$

Viskosität Kinematisch

$$\nu = \frac{\eta \left[pa * s \right]}{\rho \left[\frac{kg}{m^3} \right]}$$

Energiesatz (Immer Stromfaden zeichnen)

Energieform [m^2/s^2]

$$\frac{{w_2}^2}{2} + \frac{p_2}{\rho} + gz_2 = \frac{{w_1}^2}{2} + \frac{p_1}{\rho} + gz_1 + W_{t,1\to 2} - \varphi_{1\to 2}$$

$$\frac{{w_2}^2}{2}$$
 spezifische kinetische Energie

$$W_{t,1\rightarrow2}\left[\frac{J}{kg};\frac{m^2}{s^2}\right] Zugegebene\ Arbeit\ von\ Pumpe$$

 $\varphi_{1\rightarrow 2}$ Reibungsverlust; spezifische Dissipation

Druckform [Pa]

$$\frac{{w_2}^2\rho}{2} + p_2 + gz_2 \rho = \frac{{w_1}^2\rho}{2} + p_1 + gz_1 \rho$$

 $\frac{{w_2}^2 \rho}{2} \cong Staudruck$

 $p_2 \cong statischer Druck$ $gz_2 \rho \cong H\ddot{o}hendruck$

 $\varphi_{1\rightarrow 2}\rho \cong totaler Druckverlust$

Höhenform [m]

$$\frac{{w_2}^2}{2g} + \frac{p_2}{\rho g} + z_2 = \frac{{w_1}^2}{2g} + \frac{p_1}{\rho g} + z_1 + H_m - H_v$$

 $\frac{{w_2}^2}{2g} \cong Geschwindigkeitshöhe$

 $\frac{p_2}{\rho g} \cong Manometer H\"{o}he / Druckh\"{o}he$

 $z_2 = aeodätische Höhe$

 H_m [m] Förder Höhe = $\frac{W_{t,1\to 2}}{a}$ (technische Arbeit am Fluid)

 $H_v[m]$ verlust $H\ddot{o}he = \frac{\varphi_{1\to 2}}{q}$

Impulssatz (Flächenvektoren und Stromfaden zeichne) H,, [m] benötigte technische Arbeit in m

$$\rho * (w_{1x} * [w_1 * A_1 * \cos(\alpha)] + w_{2x} * [w_2 * A_2 * \cos(\alpha)]$$

= $F_{kx} + F_{px} + F_{sx}$

A_r[m²] Fläche parallel zur Strömungsrichtung

 $F_{kx}[N]$ Schwerkraft (m * g)

 F_{px} [N] Druckkraft; $-p_1 * A_1 * \cos(\alpha) - p_2 * A_2 * \cos(\alpha)$

 $F_{\rm sr}$ [N] Fluidkraft Reaktionskraft $R_{\rm sr} = -F_{\rm sr}$

Alles fett wird absolutes Koordinate verwendet,

alles dünne ist bezüglich Vektor

Reibung

Ersatzdurchmesser

$$d_h = \frac{4*A}{U}$$

 $d_h[m]Hydraulischer Durchmesser$

U[*m*] *Benetzte Oberfläche* A[m²] Fliessende Fläche

Dissipation

$$\varphi_{1\to 2} = \zeta_1 * \frac{{w_1}^2}{2} + \zeta_2 * \frac{{w_2}^2}{2}$$

 ζ_1 [-] totaler Verlustbeiwert

Rohrreibung

$$\zeta = \lambda * \frac{l}{d}$$

 λ [-]Reibungswert (erste Annahme für Rohr 0.03)

$$\lambda = \frac{8 * \tau_w}{\rho * w^2}$$

Pumpen Dimensionen

NPSH-Wert

Bei Anlagedimensionierung aus Datenblatt der Pumpe $NPSH_R$ ablesen und so $NPSH_{Anlage}$ festlegen:

$$NPSH_A = NPSH_R + 0.5m$$

Aus NPSH₄ Wert die Anlagedefinieren:

$$NPSH_A = \frac{p_1 - p_D}{\rho * g} - (z_s - z_1) - H_v$$

NPSH₄ [m] Net Positiv Suction Head der Anlage p_D [Pa] Dampfdruck von Wasser bei T_{definiert}

z_s [m] Höhe des Ansaugstutzen

 H_v [m] nur bis zur Ansaugseite der Pumpe

Leistung [W]

$$P_{motor} = \frac{P_{fluid}}{n}$$

 η [-] Wirkleistungsgrad

$$P_{fluid} = \dot{m} * W_{t,1\to 2} = \rho * Q * W_{t,1\to 2}$$

$$Q\left[\frac{m^3}{s}\right]$$
 Einheitengleichung wichtig

Anlagekennlinie aufbauen

Energiesatz in Höhenform für Stromfaden aufbauen

$$H_m = A + B * Q^2$$

$$A[m] = \frac{p_2}{\rho q} - \frac{p_1}{\rho q} + z_2 - z_1$$

B bestimmen durch Arbeitspunkt auf Graphik

Oder Rechnen mit:

Umformung von
$$w = \frac{Q}{A}$$

$$B\left[\frac{s^2 * m}{l^2}\right] = \frac{\left(\frac{Q}{A}\right)_2^2}{2g} - \frac{\left(\frac{Q}{A}\right)_1^2}{2g} + \frac{\zeta_1 * \left(\frac{Q}{A}\right)^2}{2g} = \frac{Q_2^2}{2gA^2} - \frac{Q_1^2}{2gA^2} + \frac{\zeta^* Q^2}{2gA^2}$$

Kreispumpe

Hier gilt A = 0, da im Kreis gepumpt wird (Stromfaden vor zu nach der Pumpe)

$$H_m = 0 + B * Q^2$$

$$B\left[\frac{s^2 * m}{l^2}\right] = \frac{\zeta * 16}{2g\pi^2 d^4}$$

Pumpenbenennung

Name D Druckstutzen - D Schaufelrad

NCP 30 - 160

(Druckstutzen 30 mm, Schaufelrad 160 mm)