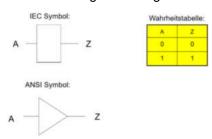
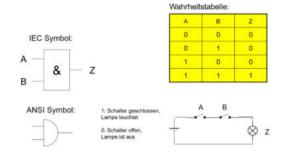
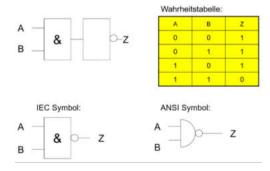

Elementare logische Verknüpfungen


Inverter (NOT-gate)

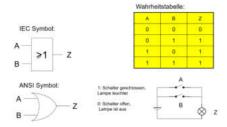
- Invertiert das Signal Z= !A


<u>Puffer</u>

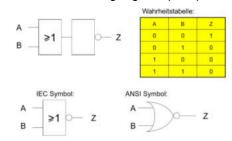
- Verzögert das Signal


AND-gate

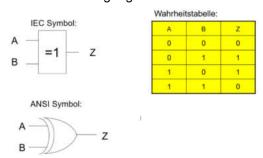
- Für Ausgang Z= A&B


NAND-gate

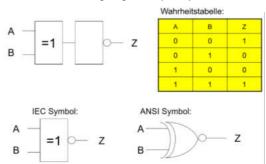
- Für Ausgang Z= !(A&B)


OR-gate

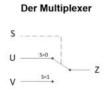
- Für Ausgang Z= A#B


NOR-gate

- Für Ausgang Z= !(A#B)

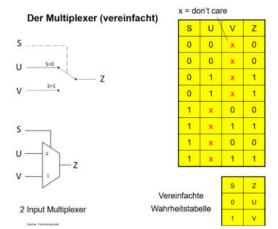

EXOR / XOR-gate

- Für Ausgang Z= A#B einzeln

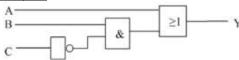

EXNOR / XNOR-gate

- Für Ausgang Z = !(A#B) einzeln

Der Multiplexer (Muxer)


- S wählt zwischen U und V

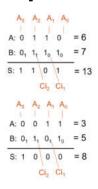
S	U	V	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

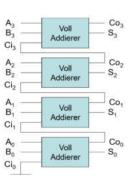

- Muxer können vereinfacht werden

Boolsche Algebra

OR-Vernüpfung: #
AND-Verknüpfung: &
NOT-Verknüpfung: !

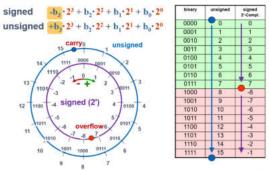
Beispiel:




Y= A # (B & !C)

Das Binär-/Hexadezimalsystem

Dezimal	Binär	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	b
12	1100	С
13	1101	d
14	1110	E
15	1111	F

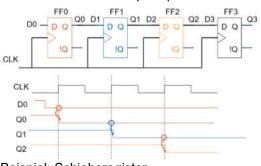

Binärarithmetik

Zweierkomplementzahlen (signed/ unsigned)

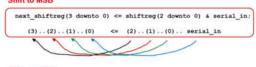
 Negative Zahlen k\u00f6nnen dargestellt werden -> Achtung Over/Underflow!

Beispiel 4-Bit: Von 0 bis 7 und -8 bis -1

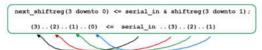
2-er Potenz-reihe

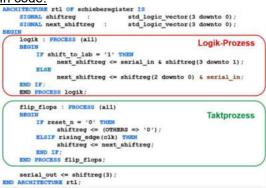

Potenz	Resultat
0	1
0 1 2 3	2
2	4
3	8
4	16
5	32
6	64
6 7 8	128
8	256
9	512
10	1024
11	2048
12	4096
13	8192
14	16'384
15	32'768
16	65'536

VHDL: Programmaufbau

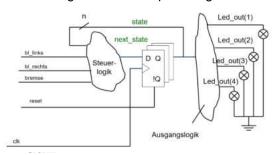

- Eingangslogik
- Programm
- Ausgangslogik

VHDL: Schieberegister

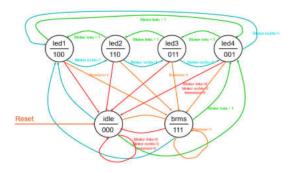

- Besteht aus Flip-Flops


Beispiel: Schieberegister

Shift to LSB



In code:


<u>Automaten - FSM (Finite State Machine)</u>

- Logikaufbau: Beispiel: Knight rider

Automaten: Bubble (RTL)-Diagramm

- Ermitteln der Zustände
- Ermitteln der Zustandsübergänge
- Zeichnen

