
Harmonische Schwingungen 
Winkelfunktionen 
sin2 𝛼 + cos2 𝛼 = 1 ⟺  sin2 𝛼 = 1 − cos2 𝛼 ⟺  cos2 𝛼 = 1 − sin2 𝛼  

sin(𝛼) = cos(𝛼 −
𝜋

2
) ⟺ cos(𝛼) = sin (𝛼 +

𝜋

2
)  

 
 
 
Additionstheoreme 
cos(𝛼 + 𝛽) = cos 𝛼 ∙ cos 𝛽 − sin 𝛼 sin 𝛽  
cos(𝛼 + 𝛽) = cos 𝛼 ∙ cos 𝛽 + sin 𝛼 sin 𝛽  
sin(𝛼 + 𝛽) = sin 𝛼 ∙ cos 𝛽 + cos 𝛼 sin 𝛽  
sin(𝛼 − 𝛽) = sin 𝛼 ∙ cos 𝛽 − cos 𝛼 sin 𝛽  
 
Produktformeln 

sin 𝛼・ sin 𝛽 =
1

2
(cos(𝛼 −  𝛽) − cos(𝛼 +  𝛽))  

cos 𝛼・ cos 𝛽 =
1

2
(cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽))  

sin 𝛼・ cos 𝛽 =
1

2
(sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽))  

 
Summenformeln 

sin 𝛼 + sin 𝛽 = 2 sin
𝛼+𝛽

2
cos

𝛼−𝛽

2
  

sin 𝛼 − sin 𝛽 = 2 cos
𝛼+𝛽

2
sin

𝛼−𝛽

2
  

cos 𝛼 + cos 𝛽 = 2 cos
𝛼+𝛽

2
cos

𝛼−𝛽

2
  

cos 𝛼 − cos 𝛽 = −2 sin
𝛼+𝛽

2
sin

𝛼−𝛽

2
  

 
Überlagerungen harmonischer Schwingungen 
Überlagerung harmonischer Schwingungen derselben Frequenz 
𝐴 sin(𝜔𝑡 +  𝛼)  +  𝐵 sin(𝜔𝑡 +  𝛽)  =  𝐶 sin(𝜔𝑡 +  𝛾)  

𝐶 = |(
𝐴 cos 𝛼 + 𝐵 cos 𝛽
𝐴 sin 𝛼 + 𝐵 sin 𝛽

)|  

𝛾 = tan−1 (
𝐴 sin 𝛼+𝐵 sin 𝛽

𝐴 cos 𝛼+𝐵 cos 𝛽
)  

 
Überlagerung von Schwingungen unterschiedlicher Frequenz 

sin(𝜔1𝑡) + sin(𝜔2𝑡) = 2 ∙ cos (
𝜔1 − 𝜔2

2
𝑡) ∙ sin (

𝜔1 + 𝜔2

2
𝑡) 

 
Hyperbolische Funktionen 

sinh(𝑥) =
𝑒𝑥−𝑒−𝑥

2
  

cosh(𝑥) =
𝑒𝑥+𝑒−𝑥

2
  

sin(𝑥) =
𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖
  

cos(𝑥) =
𝑒𝑖𝑥+𝑒−𝑖𝑥

2
  

 
Anwendungen der Differentialrechnung 
Mittelwertsatz der Differentialrechnung 
Für eine auf [a, b] differenzierbare Funktion gibt es eine Stelle 𝜉 ∈ [𝑎, 𝑏] 
welche die gleiche Steigung aufweist, wie die mittlere Steigung in diesem 
Intervall. 

𝑓’(𝜉)  =
 𝑓(𝑏)  −  𝑓(𝑎)

𝑏 − 𝑎
 

 
Extremwertaufgaben 
Hauptbedingung: Was soll minimiert/maximiert werden? 
Nebenbedingung: «Zusätzliche Angaben» 
Nebenbedingung umformen + in Hauptbedingung einsetzten, vereinfachen 

Erhaltene Zielfunktion ableiten. 𝑓′ = 0 ,   𝑓′′ {
< 0 𝑀𝑎𝑥𝑖𝑚𝑢𝑚
> 0 𝑀𝑖𝑛𝑖𝑚𝑢𝑚

. 

Resultat in NB und/oder HB einsetztenf 
 
 
 
 
 

Taylorreihen 

lim
𝑛→∞

𝑇𝑛(𝑥) = ∑
𝑓(𝑘)(𝑥0)

𝑘!

∞

𝑘=0

(𝑥 − 𝑥0)𝑘 

= 𝑓(𝑥0) +
𝑓′(𝑥0)

1
(𝑥 − 𝑥0) +

𝑓′′(𝑥0)

2
(𝑥 − 𝑥0)2 +

𝑓′′′(𝑥0)

6
(𝑥 − 𝑥0)3 

Konvergenzradius 

𝜌 = lim
𝑘→∞

|𝑎𝑘|

|𝑎𝑘+1|
 ; ∑ 𝑎𝑘 ∙∞

𝑘=0 (𝑥 − 𝑥0)𝑘  

 
Binomialreihe / Newtonreihe 
Die Funktion 𝑓(𝑥)  =  (1 +  𝑥)𝛼 besitzt um 𝑥0 = 0 die Taylorreihe  

(1 +  𝑥)𝛼 = ∑ (
𝛼

𝑘
) ∙ 𝑥𝑘

∞

𝑘=0

 

mit den Binomialkoeffizienten 

(
𝛼

𝑘
) =

𝛼 ∙ (𝛼 − 1) ∙ (𝛼 − 2) ∙ ⋯ ∙ (𝛼 − 𝑘 + 1)

𝑘!
  𝑢𝑛𝑑 (

𝛼

0
) = 1 

Bsp. (0.5
3

) =
0.5∙(0.5−1)∙(0.5−2)

3!
  

 
Gewöhnliche Differentialgleichungen 
Beispiele  

𝑦′ = 𝑎 ∙ 𝑦 𝑦(𝑥) = 𝑐 ∙ 𝑒𝑎∙𝑥  
𝑦′′ = −𝜔2𝑦 𝑦 = 𝑎 ∙ sin(𝜔 ∙ 𝑥) + 𝑏 ∙ cos(𝜔 ∙ 𝑥)  

    = 𝐴 ∙ sin (𝜔 ∙ 𝑥 + 𝜑)  
𝑦′′ = 𝜔2𝑦 𝑦 = 𝑐 ∙ sinh(𝜔 ∙ 𝑥) + 𝑑 ∙ cosh(𝜔 ∙ 𝑥)  

    = 𝑎 ∙ 𝑒𝜔𝑥 + 𝑏 ∙ 𝑒−𝜔𝑥  
𝑦′ = 𝑦2 𝑦 =

1

𝑐−𝑥
  

𝑦′ = 𝑦 ∙ (1 − 𝑦) 𝑦 =
𝑒𝑥

𝑐+𝑒𝑥
=

1

𝑐∙𝑒𝑥+1
  

 
Lineare gDgl erster Ordnung mit konstanten Koeffizienten 
𝑦′(𝑥) = 𝑎 ∙ 𝑦(𝑥) + 𝑏(𝑥)  
𝑦 = 𝑦ℎ + 𝑦𝑝  

Ansatzfunktionen 

𝑏(𝑥)  𝑦𝑝(𝑥)  

konstant A konstant 

Polynom vom Grad n  Polynom vom Grad n  

sin(𝜔𝑥) , cos(𝜔𝑥)  𝐴 ∙ cos(𝜔𝑥) + 𝐵 ∙ sin(𝜔𝑥)  

𝑒𝑏𝑥  (𝑏 ≠ −𝑎)  𝐴 ∙ 𝑒𝑏𝑥  
𝑒−𝑎𝑥  𝐴 ∙ 𝑥 ∙ 𝑒−𝑎𝑥  

 
Lineare gDgl zweiter Ordnung mit konstanten Koeffizienten 
Charakteristisches Polynom: 
Bsp. 𝑦′′ − 3𝑦′ + 2𝑦 = 0 ⟹ 𝑝(𝜆) = 𝜆2 − 3𝜆 + 2 

Nullstellen 𝑝(𝜆)  
zwei reelle Nullstellen 𝜆1 ≠ 𝜆2 ∈ ℝ 𝑦ℎ = 𝑐1 ∙ 𝑒𝜆1𝑥 + 𝑐2 ∙ 𝑒𝜆2𝑥 
eine doppelte reelle Nullstelle 𝜆 ∈ ℝ 𝑦ℎ = (𝑐1 + 𝑐2𝑥) ∙ 𝑒𝜆𝑥 
komplex konj. Nullstellenpaar 
𝜆 = 𝑟 ± 𝑖𝜔 ∈ ℂ  

𝑒𝑟𝑥 ∙ (𝑐1 ∙ cos(𝜔𝑥) + 𝑐2 ∙ sin(𝜔𝑥)) 

 
Ansatzmethode für die inhomogene Gleichung  

𝑏(𝑥)  Bedingung an R 
𝑅 = {𝜆 ∣ 𝑝(𝜆) = 0}  

𝑦𝑝(𝑥)  

Polynom vom 
Grad 𝑛 ≥ 0  

0 ∉ 𝑅  𝐴0 + 𝐴1𝑥 + ⋯ + 𝐴𝑛𝑥𝑛  
0 ∈ 𝑅, m-fach 𝐴0𝑥𝑚 + 𝐴1𝑥𝑚+1 + ⋯ + 𝐴𝑛𝑥𝑚+𝑛  

𝑒−𝜆𝑥  𝜆 ∉ 𝑅  𝐴 ∙ 𝑒𝜆𝑥   
𝜆 ∈ 𝑅, m-fach 𝐴 ∙ 𝑥𝑚 ∙ 𝑒𝜆𝑥  

sin(𝜔𝑥),  
cos(𝜔𝑥)  

±𝑗𝜔 ∉ 𝑅  𝐴 ∙ cos(𝜔𝑥) + 𝐵 ∙ sin(𝜔𝑥)  
±𝑗𝜔 ∈ 𝑅  𝑥 ∙ (𝐴 ∙ cos(𝜔𝑥) + 𝐵 ∙ sin(𝜔𝑥))  

 
Separierbare gDgl 
Eine gDgl erster Ordnung heisst separierbar, wenn sie von derForm 𝑦′ =
 𝑓(𝑥) 𝑔(𝑦) ist. Speziell ist jede gDgl der Form 𝑦’ =  𝑔(𝑦) separierbar (man 
setzt f(x) = 1). 
Vorgehen: 

Gleichung umformen 
𝑑𝑦

𝑑𝑥
=  𝑓(𝑥) 𝑔(𝑦) 

Trennung der Variablen 
1

𝑔(𝑦)
𝑑𝑦 =  𝑓(𝑥) 𝑑𝑥 

Integrieren ∫
1

𝑔(𝑦)
𝑑𝑦 =  ∫ 𝑓(𝑥) 𝑑𝑥 

Nach y auflösen 
 
 
 
 
 
 
 



Integrationsregeln 
 

𝐹(𝑥) 𝑦 = 𝑓(𝑥) 𝑓′(𝑥) 

𝑒𝑥  𝑒𝑥  𝑒𝑥  

𝑎𝑥

ln (𝑎)
 𝑎𝑥 𝑎𝑥 ∗ ln (𝑎) 

1

𝑛 + 1
𝑥𝑛+1 𝑥𝑛 𝑛 ∗ 𝑥𝑛−1 

𝑎

2
∗ 𝑥2 𝑎𝑥 𝑎 

𝑥 ∗ ln(𝑥) − 𝑥 ln(𝑥) 
1

𝑥
 

𝑥 ∗ (ln(𝑥) − 1)

ln (𝑎)
 log𝑎 𝑥 

1

ln(𝑎) ∗ 𝑥
 

ln(|𝑥|) 
1

𝑥
 −

1

𝑥2
 

ln(|𝑥 + 𝑎|) 
1

𝑥 + 𝑎
  

2

3
𝑥3/2 √𝑥 = 𝑥

1
2 

1

2 ∙ √𝑥
 

𝑎

2
∗ 𝑥2 𝑎𝑥 𝑎 

− cos(𝑥) sin (𝑥) cos (𝑥) 
sin(𝑥) cos (𝑥) −sin (𝑥) 

tan(𝑥) 1
+ tan (𝑥) 

 

arcsin(𝑥) 
1

√1 − 𝑥2
  

arccos(𝑥) −
1

√1 − 𝑥2
  

arctan(𝑥) 
1

1 + 𝑥2
  

 
Partielle Integration 
«Umkehrung Produktregel» 
Gut geeignet, wenn der Integrand ein Produkt ist. 

∫ 𝑢′(𝑥) ∙ 𝑣(𝑥) 𝑑𝑥 = 𝑢(𝑥) ∙ 𝑣(𝑥) − ∫ 𝑢(𝑥) ∙ 𝑣′(𝑥)𝑑𝑥  
Wenn einer der Faktoren ein Polynom ist, empfiehlt es sich dieses als v(x) 
zu wählen: 

∫ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚 ∙ 𝑓(𝑥) ⇒ 𝑓(𝑥) = 𝑢′(𝑥);  𝑃𝑜𝑙𝑦𝑛𝑜𝑚 = 𝑣(𝑥)  
Ausnahme ln(x) immer v(x) 
 
Erste Substitutionsregel 
«Umkehrung Kettenregel» 
Gut geeignet, wenn u’ auch vorkommt 

∫ 𝑓(𝑔(𝑥)) ∙ 𝑔′(𝑥)  𝑑𝑥
𝑏

𝑥=𝑎

=  ∫ 𝑓(𝑢)  𝑑𝑢
𝑔(𝑏)

𝑢=𝑔(𝑎)

 

∫ 𝑓(𝑔(𝑥)) ∙ 𝑔′(𝑥)  𝑑𝑥 =  ∫ 𝑓(𝑢)  𝑑𝑢 = 𝐹(𝑔(𝑥)) 

 
Spezialfälle 

∫
𝑓′(𝑥)

𝑓(𝑥)
 𝑑𝑥 = ln|𝑓(𝑥)| + 𝑐 

∫ 𝑓(𝑥)𝑓′(𝑥) 𝑑𝑥 =
1

2
𝑓(𝑥)2 + 𝑐 

∫ 𝑓(𝑎𝑥 + 𝑏) 𝑑𝑥 =
1

𝑎
𝐹(𝑎𝑥 + 𝑏) + 𝑐 

 
Zweite Substitutionsregel 

Für eine invertierbare 
Substitutionsfunktion h gilt 

Für eine invertierbare Funktion 
g gilt 

∫ 𝑓(𝑥) 𝑑𝑥 =  ∫ 𝑓(ℎ(𝑦))

∙ ℎ′(𝑦)  𝑑𝑦 

∫ 𝑓(𝑔(𝑥))  𝑑𝑥 = ∫ 𝑓(𝑦)

∙ ℎ′(𝑦) 𝑑𝑦 
Vorgehen 

Wähle ℎ(𝑦) Wähle invertierbares 𝑔(𝑥), 
bestimme 𝑥 = ℎ(𝑦) 

Substituiere 𝑥 = ℎ(𝑦), 𝑑𝑥 =
ℎ′(𝑦) 𝑑𝑦 

Substituiere 𝑔(𝑥) = 𝑦, 𝑑𝑥 =
ℎ′(𝑦) 𝑑𝑦 

integriere den entstandenen Ausdruck nach y 
Substituiere im Ergebnis der Integration 𝑦 =  𝑔(𝑥) 

𝑦 = 𝑔(𝑥) = ℎ−1(𝑥) 
 
 

Partialbruchzerlegung 
𝑝(𝑥)

(𝑥−𝑎)∙(𝑥−𝑏)2∙(𝑥−𝑐)2+𝑑2 =
𝐴1

𝑥−𝑎
+

𝐵2

𝑥−𝑏
+

𝐵2

(𝑥−𝑏)2 +
𝐶𝑥+𝐷

(𝑥−𝑐)2+𝑑2  

 
Bestimmte Integrale und Anwendungen  
Uneigentliche Integrale 

∫ 𝑓(𝑥)

∞

𝑎

𝑑𝑥 = lim
𝑏→∞

𝐹(𝑏) − 𝐹(𝑎) 

 
Anwendungen des bestimmten Integrals 
 Bogenlänge 

𝐿 = ∫ √1 + 𝑓′(𝑥)2
𝑏

𝑎

𝑑𝑥 

Volumenberechnungen für Rotationskörper 

Um x-Achse: 𝑉 = 𝜋 ∫ 𝑓(𝑥)2
𝑏

𝑎

𝑑𝑥 

Um y-Achse: 𝑉 = 𝜋 ∫ 𝑥2 𝑓′(𝑥)
𝑏

𝑎

𝑑𝑥 

Mantelfläche 

𝑀 = 2𝜋 ∫ 𝑓(𝑥)√1 + 𝑓′(𝑥)2 
𝑏

𝑎

𝑑𝑥 


