Integiationsmethroden
Infegrale ooy Grund funlcion
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3 fx”‘ax - ><°M*r C
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Exponential - und  Logavithmessfunttionen:
&) Jexdx = e¥+ C
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Infegrale der elemuntaren Funktionen
tr/‘\jonomcfr/swe Fynktionen :

9) fCo\s(X)dX = sinlx)*+ C

h) Jsin) dx = -cosx)* C

Oftan (x) dx = -In | cos(x)| + C
weitere  Grand funledionen

J)J 14+xz dx = arctan (x)+ C
1

k)fW*m dx = qresin () + C

)f]’_'4~x dx = arccos (x) + ¢

Infearale von verSchobenen Funictionen

Das unbestimmte Integral der um den Betrag k in x-Richtung
verschobenen Funktion g(x) = f (x-k ) ist.

ff'(x— k)dx = F(x-k)+C

Infe arale von gestreckten Funietionen

Das unbestimmte Integral der um den Faktor k in x-Richtung
gestreckten/gestauchten Funktion g(x) = f (k-x) ist.

ff(k'x)dx =%F(k-><) 0 k20

Partielle Infe gration

/u‘(x)'v () dx =ux) V&) —fu(x)'v’(x) dX
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Wkegration durch  Fortialbuchzriegung

1) Faletorisier den Nenner : (Nulstllen)
= (x=1)(x*1)
2) Mg. Form der Zerlequng: Man sucht den leonst. A&B

1 a A . 8
(x=-N(x+1) ~ (x=1)  (xt4)

3) Gleichnahmia machen
A1) * B(X-1) - Swit mirsseh zahler dberénstimimen

(X-1)0x+ 1) 1= Alx+1)* B(x-1)
4) Restimmumg A & B
© el x-1: 1=pA(1+4)+ 8 (41-1) = 4=2A=7A=%
* Sehe X==f A= A4 BE1-)S 1< 28 B
5) Ewselzen vov A wd B (Partialbimolezer)
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Forttadl ok zileguna -

A Ix-4 mwm A B C
(X——4)()<+ Z)z X=1 X+ 2 (X“’ 2)?
Gleichnam o waghen -

Ax=2)* + B(x+2)(X=D* ((X=-1) & vgmw ABC

Alx+2)%= A(x*+ tx+4) = AX® + Afx +A1 Summs -
BOCNX+2) = B(X2+ X+ 1) = BX®x 8X%+B [ (ArB)x™+ (1A+ BrOX
(,CX+4> = CX"' C + (‘}/A\‘ZB_C)

Koehizient vergleich mit dum Zahler 4x2+ 9x -4 -
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Mante|Rache von Rotationslzsrpern
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Infedval durch Supstitution

SAudstellen & Alleiten oor Subst. gleichun gen.
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s Durchfahren dor Sub durdh  Einselaen :
fX'COS(Xz) dx =f)\’- cos (u) g = gfcos (u)@

‘ Berechnung des ke arals in der neven Variade u:

%j\cosw) du = %siVI W)+ C
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Shmerpanid v Rotationsigrper
Schmgrpunlgt S = (Xs 101 0) eines  Rotatiohslesrper -
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x&svjux-f(x) dx
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Taylorrelhen

Pottnzreinen

Spezielle_polenzreine: fing Poftmrcine ist eine L(Mendé(che Reihg
. = asx + ? = k

vom Typ:  POD= dotdax + a2 X*+. éﬂx

Mlgemping. Polenareine - ensteht derch veméqebumj um Xo -
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Menge der X in plx)

Symmtiie betradtungein

Gerade: Tunictionen: Aonsensimmetrisch bz4l. dar Y-Adse
f2) = £0)

%evadfa taglor: e gevade eXp. =7 Gakra=o (cos0x)

Wigerade FoulcTionen: Punlisymmelvisch bzgl. des Urspungs %(X)’

f=x) = =£00
UM%Y’AA—Q ’(a.«é\ort N\e UV\%}&M expon. —v Aze =0 (S\M(X))
Symmatie Uon FPotepreinen

a0+a4>(+ azX2+,

o
- [ o -
k=0

jst wur gevade) ungerade falls sie pur gerade bev.

o ungeradr Potenzen ewthalt.

Symmtvit von Taylpreeiran
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4 2((
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X x
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Binomia lrene - A\l@ew\e'me Formel
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n Al \A, - - . . -
hotiel k . (k> k! (n-e)! (Oé\z <n)

* Diese Reihe heisst Binomialreihe : Verally. der binomischen Tormel

n
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kT ! Lk
Q(lz) o) $(«) Xo)
am ¥o=0" Qu= kf jm X, eR: o Qes \f\.

* Binowial veine.: i
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— Uveare DGL Nummerische Verkalaren
o Cesudt st die Funlehion mit des Cigenschaft - ,:%?%? hOW\O%ﬁV\L DGL* Lrennay | Appoximdion dir whebansten Losorgen  durch cnen
¥-d (Diese Bedingung st eine PGL \.3 = ;77”” WWANNWSTE777777 / “Sreckenng ' aus Geradansbideen wit dun duron  DGL
" Gesuckfe funhoneh . ?f%?% i , 12 SN '+ §094=0 Losung = 4= K‘ﬁ_m) gedebenen  Sfteigungsuerten
Yy=C-e*, Ce R (e“*(, ist. {alsda YB EZ%HH ] o mmatiay Cleidung der Gerade mit Steigunoy w im  Purleh (Xe,Ye):
Yl=e I 0 gygax—y yiaX Inhomogens. DGL*
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