
C 

Dateien 

Datei öffnen: 
FILE *fopen (const char *filename, const char *mode) 

Mode: "r" read; "w" write, "a" attach 

In Datei schreiben: 
int fprintf (FILE *stream, const char *format, ...) 

Aus Text Datei formatiert lesen: 
int fscanf (FILE *stream, const char *format, ...) 

Flush 
fflush (stream) 

fflush schreibt noch nicht geschriebene Daten für stream, wirft noch nicht gelesene, gepufferte 

Eingaben weg. 

Prüfe ob am Ende des Files amgekommen: 
int feof (FILE *stream ); 

Datei schliessen: 
int fclose(FILE *stream) 

fclose schreibt noch nicht geschriebene Daten für stream, wirft noch nicht gelesene, gepufferte 

Eingaben weg, gibt automatisch angelegte Puffer frei und schliesst den Datenstrom 

 

Präprozessor 

Übersetzung von C/C++ in 3 Phasen 

1. Phase: Präprozessor (rein textuelle Substitutionen) 

Präprozessor Direktiven alle mit # 

2. Phase: Übersetzung in Maschinencode 

obj-Dateien: (linkbare Einheit) 

3. Phase: Linken der Teile zu ausführbarem Programm 

Der Präprozessor hat folgende Aufgaben: 

• Dateien in andere einfügen #include 
#include <Dateiname> 

#include "Dateiname" 

• Konstanten definieren #define 
#define ANZAHL 10 

Rein textuelle Ersetzung 

• Makros zur Verfügung stellen #define 
#define MAKRO(Argl, Arg2, ...) Ersetzungstext 

Rein textuelle Ersetzung 

• Teile des Quelltextes selektieren #ifdef, #ifndef 

Mehrfache Übersetzung/Includes verhindern (Headerfiles): 
#ifndef MEINEDATEI_H 

 

#define MEINEDATEI_H 

// Code 

#endif 

 

Dynamischer Speicher 

calloc(n, size) Alloziert mit 0 initialiesierten Speicher von n mal «size» 

malloc(n) Alloziert uninitialiesierten Speicher von n bytes 

Listen 

First, next → 

AdressOf Operator 
int i = 5; 

int* pi = &i; 

printf("%d", *pi); //Value of i: 5 

printf("%d", i); //Value of i: 5 

printf("%d", pi); //Adress of i 

 

Java 

Basics  

 
Datentypen 

Typenhierarchie:  double (höchster Typ) 

float 

long 

int 

short 

byte (niedrigster Typ) 

Automatische Umwandlung: Bei gemischten Datentypen wird automatisch in den höheren 

umgewandelt 

Umwandlung in niedrigeren Datentyp: float d = 4.0; int i = (int)d; 

  



Referenzdatentypen 

Arrays 

Als Parameter: Werden immer als Pointer übergeben 

Deklaration:   
int[] a; // deklariert a 
a = new int[5]; // reserviert Platz fuer 5 int auf Heap 

Länge wird mit Objekt gespeichert. Kann mit arrayname.length abgerufen werden 

Strings  

Verkettung:   
String str3 = str1 + str2; 
String str1 = "Hallo " + 1 + 2;//"Hallo 12" 

Test auf Gleichheit: if (s.equals(t)) {} // teste auf Gleichheit von Wert  
 

Reihenfolge, Sortierung: int compareTo(String str); 
int n = a.compareTo(b); 

n == 0: a ist gleich b 

n < 0: a steht vor b "ameise" < "biene" 

n > 0: a steht nach b 

Sonderzeichen < Zahlen < Grossbuchstaben < Kleinbuchstaben 

 

Methoden 

Instanzmethoden sind an ein Objekt gebunden, static-Methoden an eine Klasse. 

Zugriffsmodifikator (access control modifier) 

public überall sichtbar (auch für andere Klassen; main Methode muss public sein) 

protected nur innerhalb derselben und abgeleiteter Klasse sichtbar 

private nur innerhalb derselben Klasse sichtbar 

static Methode können direkt Aufgerufen werden, ohne dass man eine Instanz erstellt. 

 

Objekt 

Polymorphismus 

Ein Objekt behält immer die Identität der Klasse, aus der es erzeugt wurde. 

Wenn eine Methode auf ein Objekt aufgerufen wird, wird immer die Methode verwendet, die mit 

der Klasse des Objekt verbunden ist 

 

Klasse 

Oberklasse: Klasse die vererbt (Superclass/Baseclass) 

Unterklasse: Klasse die erbt (Subclass/abgeleitete Klasse) 

Von der Oberklasse werden in der Unterklasse folgende Elemente übernommen: 

alle Attribute 

alle Methoden 

die Unterklasse kann 

zusätzliche Attribute definieren 

zusätzliche Methoden definieren 

geerbte Methoden mit @Override überschreiben,d.h. ihre Funktionalität anpassen 

Eine Methode der Oberklasse kann explizit mit super() aufgerufen werden 

Abstrakte Klassen und Methoden 

können nicht instanziert werden 

abstrakte Methoden müssen in abgeleiteten Klassen implementiert werden 

Nur abstrakte Klassen dürfen abstrakte Methoden enthalten. 

 

Konstruktor 

«Methode zum Kreiren von Objekten». Ohne Rückgabewert. 

Bei abgeleiteten Klassen wird zuerst der Konstruktor der Oberklasse aufgerufen. 

 

Vererbung 
public interface Movable {…} 

public abstract class Figure {…} 

public class Circle extends Figure 

implements Movable{…} 

public class Rectangle extends 

Figure{…} 

 

 

 

 

 

 

Exceptions 

Exception «werfen» 
public double msSqrt(double d) throws Exception { 

if (d < 0) 

throw new Exception("Argument negativ"); 

else 

return Math.sqrt(d); 

} 

Exception «fangen» 
try { 

double d = mySqrt(p); 

result = "Wurzel: " + d;} 

catch (Exception ex) { 

result = ex.getMessage();} 

Eigene Exception Klassen 
public class MyException extends Exception { 

public MyException (String message) { 

super(message); 

} 

} 



1   import javax.swing.*; // Import Swing components
2   import java.awt.*; // Import AWT for Color and Graphics
3   import java.awt.event.*; // Import events like ActionListener
4   
5   // Class extends JFrame to create a window
6   // Implements ActionListener to handle button clicks
7   public class GUI extends JFrame implements ActionListener {
8   // GUI components and variables
9   private JButton btnColor, btnSize; // Two buttons for interaction

10   private Color currentColor = Color.BLUE; // Current color of the rectangle
11   private int x = 100, y = 100, size = 200; // Position and size of the rectangle
12   
13   // Initializes the layout and adds components (buttons)
14   public void initComponents() {
15   JPanel panel = (JPanel) this.getContentPane(); // Get the content panel of 

the window
16   panel.setBackground(Color.WHITE); // Set background color of the window
17   panel.setLayout(new FlowLayout()); // Simple layout
18   
19   // Create the "Change Color" button
20   btnColor = new JButton("Change Color");
21   panel.add(btnColor); // Add button to the window
22   btnColor.addActionListener(this); // Register this class to handle button 

click
23   
24   // Create the "Change Size" button
25   btnSize = new JButton("Change Size");
26   panel.add(btnSize);
27   btnSize.addActionListener(this);
28   }
29   
30   // Custom drawing method — draws the rectangle
31   @Override
32   public void paint(Graphics g) {
33   super.paint(g); // Call the parent method to ensure proper drawing
34   g.setColor(currentColor); // Set the drawing color
35   g.fillRect(this.x, this.y, this.size, this.size); // Draw the rectangle at 

(x, y) with given size
36   }
37   
38   @Override
39   public void actionPerformed(ActionEvent e) { // This method handles button clicks
40   if (e.getSource() == btnColor) {
41   // Toggle color between BLUE and RED
42   currentColor = (currentColor == Color.BLUE) ? Color.RED : Color.BLUE;
43   } else if (e.getSource() == btnSize) {
44   // Enlarge square by 10
45   this.size += 10;
46   }
47   
48   repaint(); // Redraw the window with updated color or size
49   }
50   
51   // Entry point of the program
52   public static void main(String[] args) {
53   // Optional: Try to set the system's look and feel
54   try {
55   UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
56   } catch (Exception e) {
57   e.printStackTrace(); // Print error if setting the look and feel fails
58   }
59   
60   // Create the window (GUI instance)
61   GUI window = new GUI();
62   window.setTitle("Rectangle Demo"); // Set the window title
63   window.setSize(400, 400); // Set window dimensions
64   window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); // Exit when closed
65   window.initComponents(); // Add buttons and layout
66   window.setLocationRelativeTo(null); // Center the window on the screen
67   window.setVisible(true); // Make the window visible
68   }
69   }
70   




