C

Dateien

Datei 6ffnen:

FILE *fopen (const char *filename, const char *mode)
Mode: "r" read; "w" write, "a" attach

In Datei schreiben:

int fprintf (FILE *stream, const char *format, ...)
Aus Text Datei formatiert lesen:

int fscanf (FILE *stream, const char *format, ...)
Flush

fflush (stream)

fflush schreibt noch nicht geschriebene Daten fiir stream, wirft noch nicht gelesene, gepufferte
Eingaben weg.

Priife ob am Ende des Files amgekommen:

int feof (FILE *stream);

Datei schliessen:

int fclose(FILE *stream)

fclose schreibt noch nicht geschriebene Daten fir stream, wirft noch nicht gelesene, gepufferte
Eingaben weg, gibt automatisch angelegte Puffer frei und schliesst den Datenstrom

Praprozessor
Ubersetzung von C/C++ in 3 Phasen
1. Phase: Praprozessor (rein textuelle Substitutionen)
Praprozessor Direktiven alle mit #
2. Phase: Ubersetzung in Maschinencode
obj-Dateien: (linkbare Einheit)
3. Phase: Linken der Teile zu ausfiihrbarem Programm
Der Praprozessor hat folgende Aufgaben:
e Dateien in andere einfiligen #include
#include <Dateiname>
#include "Dateiname"
e Konstanten definieren #define
#define ANZAHL 10
Rein textuelle Ersetzung
e Makros zur Verflgung stellen #define
#define MAKRO (Argl, Arg2, ...) Ersetzungstext
Rein textuelle Ersetzung
e Teile des Quelltextes selektieren #ifdef, #ifndef
Mehrfache Ubersetzung/Includes verhindern (Headerfiles):
#ifndef MEINEDATEI H

#define MEINEDATEI H
// Code
#endif

Dynamischer Speicher
calloc(n, size) Alloziert mitQ initialiesierten Speicher von n mal «size»

malloc (n) Alloziert uninitialiesierten Speicher von n bytes
Listen

First, next 2>

AdressOf Operator

int i = 5;

int* pi = &i;

printf ("%d", *pi); //Value of i: 5
printf ("%d", 1i); //Value of i: 5

printf ("$d", pi); //Adress of i

Java
Basics

class RobotPose { +— Kla

public float
public
puk

X5

Yi
alpha;

public float calculateDistance() { +—
\ A

. return (float)Math.sqrt(xkx+y*y) ;//7

—
oat calculateDistance(RobotPose pose) {

public

return (float)Math.sqrt((pose.x-x)*(pose.x-x)+(pose.y-y)*(pose.y-y));

RobotPose pose = new RobotPose(); kreiert ein Objekt
RobotPose otherPose = new RobotPose();

pose.x = 10.3; zuweisen von numerisck rte

pose.y = 17.4;

float distance = pose.calculateDistance(); Aufruf der Method

float distanceToOther = pose.calculateDistance(otherPose);

Datentypen
Typenhierarchie: double (héchster Typ)
float
long
int
short

byte (niedrigster Typ)

Automatische Umwandlung: Bei gemischten Datentypen wird automatisch in den héheren

umgewandelt
Umwandlung in niedrigeren Datentyp: float d = 4.0; int i = (int)d;

Referenzdatentypen

Arrays

Als Parameter: Werden immer als Pointer Gibergeben
Deklaration:

int[] a; // deklariert a

a = new int[5]; // reserviert Platz fuer 5 int auf Heap
Lange wird mit Objekt gespeichert. Kann mit arrayname . length abgerufen werden

Strings

Verkettung:

String str3 = strl + str2;

String strl = "Hallo " + 1 + 2;//"Hallo 12"

Test auf Gleichheit: if (s.equals(t)) {} // teste auf Gleichheit von Wert

Reihenfolge, Sortierung: int compareTo (String str);
int n = a.compareTo (b);
n == 0: a ist gleich b
n < 0: a steht vor b "ameise" < "biene"
n > 0: a steht nach b
Sonderzeichen < Zahlen < Grossbuchstaben < Kleinbuchstaben

Methoden
Instanzmethoden sind an ein Objekt gebunden, static-Methoden an eine Klasse.
Zugriffsmodifikator (access control modifier)
public Uberall sichtbar (auch fir andere Klassen; main Methode muss public sein)
protected nurinnerhalb derselben und abgeleiteter Klasse sichtbar
private nurinnerhalb derselben Klasse sichtbar

static Methode konnen direkt Aufgerufen werden, ohne dass man eine Instanz erstellt.

Objekt

Polymorphismus

Ein Objekt behalt immer die Identitat der Klasse, aus der es erzeugt wurde.

Wenn eine Methode auf ein Objekt aufgerufen wird, wird immer die Methode verwendet, die mit
der Klasse des Objekt verbunden ist

Klasse
Oberklasse: Klasse die vererbt (Superclass/Baseclass)
Unterklasse: Klasse die erbt (Subclass/abgeleitete Klasse)
Von der Oberklasse werden in der Unterklasse folgende Elemente ibernommen:
alle Attribute
alle Methoden
die Unterklasse kann
zusatzliche Attribute definieren
zusatzliche Methoden definieren
geerbte Methoden mit @Override Uberschreiben,d.h. ihre Funktionalitdt anpassen
Eine Methode der Oberklasse kann explizit mit super () aufgerufen werden

Abstrakte Klassen und Methoden

kdnnen nicht instanziert werden

abstrakte Methoden miissen in abgeleiteten Klassen implementiert werden
Nur abstrakte Klassen dirfen abstrakte Methoden enthalten.

Konstruktor
«Methode zum Kreiren von Objekten». Ohne Rickgabewert.
Bei abgeleiteten Klassen wird zuerst der Konstruktor der Oberklasse aufgerufen.

Vererbung
T - e ~ public interface Movable {..}
Movable Fro public abstract class Figure {..}
public class Circle extends Figure
L L) implements Movable({..}
Z} public class Rectangle extends
i Figure{..}
Cirlcle f Rectangle)
Exceptions

Exception «werfen»
public double msSqgrt (double d) throws Exception {
if (d < 0)
throw new Exception ("Argument negativ");
else
return Math.sqgrt(d);
}
Exception «fangen»
try {
double d = mySqgrt(p);
result = "Wurzel: " + d;}
catch (Exception ex) {
result = ex.getMessage();}
Eigene Exception Klassen
public class MyException extends Exception ({
public MyException (String message) {
super (message) ;

}

QO J oy U W

gy
O WN O W

16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

import javax.swing.*; // Import Swing components
import java.awt.*; // Import AWT for Color and Graphics
import java.awt.event.*; // Import events like ActionListener

// Class extends JFrame to create a window
// Implements ActionlListener to handle button clicks
public class GUI extends JFrame implements ActionListener ({
// GUI components and variables
private JButton btnColor, btnSize; // Two buttons for interaction
private Color currentColor = Color.BLUE; // Current color of the rectangle
private int x = 100, y = 100, size = 200; // Position and size of the rectangle

// Initializes the layout and adds components (buttons)

public void initComponents () {
JPanel panel = (JPanel) this.getContentPane(); // Get the content panel of
the window
panel.setBackground(Color.WHITE); // Set background color of the window
panel.setLayout (new FlowLayout()); // Simple layout

// Create the "Change Color" button

btnColor = new JButton("Change Color");

panel.add (btnColor); // Add button to the window
btnColor.addActionListener(this); // Register this class to handle button
click

// Create the "Change Size" button
btnSize = new JButton("Change Size");
panel.add(btnSize) ;
btnSize.addActionListener (this) ;

}

// Custom drawing method — draws the rectangle

@Override

public void paint(Graphics g) {
super.paint(g); // Call the parent method to ensure proper drawing
g.setColor(currentColor); // Set the drawing color
g.fillRect(this.x, this.y, this.size, this.size); // Draw the rectangle at
(x, y) with given size

}
@Override
public void actionPerformed(ActionEvent e) { // This method handles button clicks
if (e.getSource() == btnColor) {
// Toggle color between BLUE and RED
currentColor = (currentColor == Color.BLUE) ? Color.RED : Color.BLUE;
} else if (e.getSource() == btnSize) {
// Enlarge square by 10
this.size += 10;
}
repaint(); // Redraw the window with updated color or size
}

// Entry point of the program
public static void main(String[] args) {
// Optional: Try to set the system's look and feel
try {
UIManager.setLookAndFeel (UIManager.getSystemLookAndFeelClassName()) ;
} catch (Exception e) {
e.printStackTrace(); // Print error if setting the look and feel fails

}

// Create the window (GUI instance)

GUI window = new GUI();

window.setTitle ("Rectangle Demo"); // Set the window title
window.setSize (400, 400); // Set window dimensions
window.setDefaultCloseOperation (JFrame.EXIT ON CLOSE); // Exit when closed
window.initComponents(); // Add buttons and layout
window.setLocationRelativeTo (null); // Center the window on the screen
window.setVisible (true); // Make the window visible

