
Vektorraum 
VR sei eine Menge V mit Addition und einer Skalarmultiplikation 
V darf durch Rechnen nicht verlassen werden. 
𝑢, 𝑣 ∈ 𝑉 ⇒ 𝑢 + 𝑣 ∈ 𝑉  
𝑣 ∈ 𝑉, 𝜆 ∈ 𝕂 ⇒ 𝜆 ∙ 𝑣 ∈ 𝑉  
Addition  
i) Assoziativität: (𝑢 + 𝑣) + 𝑤 =  𝑢 + (𝑣 + 𝑤), ∀𝑢, 𝑣, 𝑤 ∈ 𝑉 
ii) Existenz der Null: ∃0 ∈ 𝑉 ∶  𝑣 + 0 = 𝑣, ∀𝑣 ∈ 𝑉 
iii) Existenz des Negativen: ∀𝑣 ∈ 𝑉 ∃ − 𝑣 ∈ 𝑉 ∶ 𝑣 + (−𝑣) = 0 
iv) Kommutativität: 𝑣 + 𝑤 = 𝑤 + 𝑣, ∀𝑣, 𝑤 ∈ 𝑉 
Multiplikation  
v) Assoziativität: (𝜆 · 𝜇) · 𝑣 =  𝜆 · (𝜇 · 𝑣), ∀𝜆, 𝜇 ∈ 𝕂, 𝑣 ∈ 𝑉  
vi) Neutralelement der Eins: ∃1 ∈ 𝑉 ∶  𝑣 · 1 =  𝑣, ∀𝑣 ∈ 𝑉 
Distributivgesetze:  
vii) 𝜆 · (𝑣 + 𝑤) = 𝜆 · 𝑣 + 𝜆 · 𝑤, ∀𝜆 ∈ 𝕂, 𝑣, 𝑤 ∈ 𝑉 
viii) (𝜆 + 𝜇) · 𝑣 = 𝜆 · 𝑣 + 𝜇 · 𝑣 , ∀𝜆, 𝜇 ∈ 𝕂, 𝑣 ∈ 𝑉 

Unterräume 
Ein Unterraum U ist eine Teilmenge eines Vektorraums V , die selbst auch wieder ein 
Vektorraum ist. 
Es muss nur überprüft werden, ob man durch Rechnen den Unterraum nicht verlässt  
(Abgeschlossenheit bezüglich Addition und Skalarmultiplikation) 
In einem Unterraum muss der Nullvektor vorhanden sein. 
𝑢, 𝑣 ∈ 𝑈 ⇒ 𝑢 + 𝑣 ∈ 𝑈  
𝑣 ∈ 𝑈, 𝜆 ∈ 𝕂 ⇒ 𝜆 ∙ 𝑣 ∈ 𝑈  
Zusammengefasst: 𝑢, 𝑣 ∈ 𝑈, 𝜆, 𝜇 ∈ 𝕂 ⇒ 𝜆 ∙ 𝑢 + 𝜇 ∙ 𝑣 ∈ 𝑈  

Linearkombination 
Sei V ein VR. Seien 𝑣1, 𝑣2, … , 𝑣𝑛  ∈  𝑉 beliebige Vektoren aus V und 𝜆1, 𝜆2, … , 𝜆𝑛  ∈  𝕂 
beliebige Skalare. Dann nennt man den Vektor 𝑣 = 𝜆1𝑣1 + 𝜆2𝑣2 +⋯+ 𝜆𝑛𝑣𝑛 eine 
Linearkombination der Vektoren 𝑣1, 𝑣2, … , 𝑣𝑛. 
Durch Linearkombinationen bildet man linear abhängige Vektoren. 

Lineare Unabhängigkeit 
Falls die Vektoren linear unabhängig sind, ist 𝜆1 = 0,… , 𝜆𝑛 = 0 die  einzige Lösung von 
𝜆1𝑣1 +⋯+ 𝜆𝑛𝑣𝑛 = 0 
 
Überprüfung: 

• Vektoren in Spalten einer Matrix schreiben 

• Gauss-Algorithmus 

• Maximaler Rang (Anz. Pivots r = Anzahl Spalten n) = linear unabhängig 

Beispiele 

Vektorraum Vektoren Matrix 

ℝ2 (
1
2
) , (

3
4
) (

1 3
2 4

) 

𝑃2   3, 2𝑥, 𝑥2 𝑥 = 1
𝑥 = 0
𝑥 = −1

(
3 2 1
3 0 0
3 −2 1

) 

ℂ2𝑥2 (
1 0
0 1

) , (
0 1
−1 0

) , (
0 −𝑖
𝑖 0

) 
(

1 0 0
0 1 −𝑖
0 −1 𝑖
1 0 0

) 

Linearkombination berechnen bei linear abhängigen Vektoren 
Freie Variable einführen, beliebiger Wert (oft -1) für freie Variable setzten, Gleichungssystem 
lösen 
𝑣1 +  2𝑣2– 𝑣3 +  3𝑣4 = 0 ⇒ 𝑣1 = −2𝑣2 + 𝑣3 − 3𝑣4  

Lineare Hülle 
Ist ein Unterraum von V. Menge aller Linearkombinationen von 𝑣1, … , 𝑣𝑛. Geschrieben: 
𝑠𝑝𝑎𝑛(𝑎, 𝑏, 𝑐) 

Erzeugendensystem 
Die Vektoren 𝑣1, 𝑣2, … , 𝑣𝑛  ∈  𝑉 heissen Erzeugendensystem, falls sie den ganzen Vektorraum 
aufspannen: 𝑠𝑝𝑎𝑛(𝑣1, 𝑣2, … , 𝑣𝑛) = 𝑉 
Anders ausgedrückt: 𝑣1, 𝑣2, … , 𝑣𝑛  ∈  𝑉 bilden ei  Erzeugendensystem falls sich jeder Vektor 
𝑣 ∈  𝑉 als Linearkombination von 𝑣1, 𝑣2, … , 𝑣𝑛  ∈  𝑉 ausdrücken lässt: 
∀𝑣 ∈ 𝑉 ∃𝜆1, … , 𝜆𝑛 ∈ 𝕂 ∶ 𝑣 = ∑ 𝜆𝑖𝑣𝑖

𝑛
𝑖=1   



Basis 
𝔅 heisst Basis von V , falls 
i) 𝔅 linear unabhängig ist. 
ii) 𝔅 ein Erzeugendensystem von V ist, d.h. 𝑠𝑝𝑎𝑛(𝔅)  =  𝑉. 
Standardbasis 

𝔅 = {(
1
0
0
) , (

0
1
0
) , (

0
0
1
)}ist die Standardbasis vom ℝ3 

𝔅 = {1, 𝑥, 𝑥2} ist eine Standardbasis vom 𝑃2 

Dimension 
Die Dimension eines VR ist die Anzahl Vektoren der Basis 
𝔅 =  {𝑏1, . . . , 𝑏𝑛} 𝑣𝑜𝑛 𝑉 ∶ 𝑑𝑖𝑚(𝑉)  =  𝑛  
Basis bestimmen: 

• Vektoren in Spalten einer Matrix schreiben 

• Gauss-Algorithmus 

• Spalten ohne Pivot streichen 
Koordinatenvektor 
Ist V ein Vektorraum und 𝔅 =  {𝑏1, . . . , 𝑏𝑛} eine Basis von V, so kann jeder Vektor 𝑣 ∈
𝑉 eindeutig in der Form 𝑣 = 𝑥1𝑏1 +⋯+ 𝑥𝑛𝑏𝑛 geschrieben werden. Der Koordinatenvektor 

ist dann folgender: 𝑥 = (

𝑥1
⋮
𝑥𝑛
) ∈ 𝕂𝑛.  

Der Koordinatenvektor ist abhängig von der gewählten Basis. 

Norm 
i) absolut homogen: ‖𝜆𝑣‖ = |𝜆|‖𝑣‖  ∀𝑣 ∈ 𝑉, 𝜆 ∈ 𝕂 
ii) subadditiv:  ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖  ∀𝑣,𝑤 ∈ 𝑉 
iii) definit: ‖𝑣‖ = 0 ⟹ 𝑣 = 0 

 Euklidische Norm p-Norm Maximums-Norm 

 ‖𝑥‖2 = √∑𝑥𝑖
2

𝑛

𝑖=1

2

 ‖𝑥‖𝑝 = √∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

𝑝

 ‖𝑥‖∞ = max
1≤𝑖≤𝑛

|𝑥𝑖| 

Einheitskreis 

   

𝑎 = (
1
−2
3
) 

‖𝑎‖2

= √12 + (−2)2 + 32 

= √14 ≈ 3.74 

‖𝑎‖1 = |1| + |−2| + |3| 
= 6 

‖𝑎‖∞ = 3 

 
Matrixnormen 

 Frobenius-Norm Zeilensummennor
m 

Spaltensummennor
m 

 

‖𝐴‖𝐹 = √∑∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

 

‖𝐴‖∞

= max
1≤𝑖≤𝑚

∑|𝑎𝑖𝑗|

𝑛

𝑗=1

 

‖𝐴‖1

= max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗|

𝑚

𝑖=1

 

𝑀

= (
1 −5
−3 2

) 

‖𝑀‖𝐹

= √|1|2 + |−5|2 + |−3|2 + |2|2 

= √39 ≈ 6.24 

‖𝑀‖∞
= 𝑚𝑎𝑥{|1|
+ |−5|,   |−3|
+ |2|} 

= 6 

‖𝑀‖1
= 𝑚𝑎𝑥{|1|
+ |−3|,   |−5| + |2|} 

= 7 

Norm für Funktionen 
Lebesque-Raum: 

𝐿𝑝([−1,1]) ≔ {𝑓: [−1,1] → ℝ  | ∫|𝑓(𝑥)|𝑝 𝑑𝑥 < ∞

1

−1

 } 

="Menge der p-integrierbaren Funktionen» 
Definitionsmenge (beliebig) 
Norm: 

‖𝑓‖𝐿𝑝 ≔ ( ∫|𝑓(𝑥)|𝑝𝑑𝑥

1

−1

)

1/𝑝

 

Bsp: 

‖𝑥2‖𝐿2 ≔ ( ∫|𝑥2|2𝑑𝑥

1

−1

)

1
2

= ( ∫𝑥4𝑑𝑥

1

−1

)

1
2

= (
1

5
𝑥5 |

1
−1
)

1
2
= √

1

5
− (

−1

5
)

2

= √
2

5

2

 

∫𝑎 ∙ 𝑥𝑛 =
𝑎

𝑛 + 1
∙ 𝑥𝑛+1 =

𝑎 ∙ 𝑥𝑛+1

𝑛 + 1
∙ 

  



Skalarprodukt 
Induzierte Norm 
Jedes Skalarprodukt induziert eine Norm: 

‖𝑣‖ ≔ √〈𝑣, 𝑣〉  

Standardskalarprodukt: 

〈𝑥, 𝑦〉 =∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

, 𝑥, 𝑦 ∈ ℝ𝑛 

〈𝑥, 𝑦〉 =∑𝑤𝑖̅̅ ̅𝑧𝑖

𝑛

𝑖=1

, 𝑤, 𝑧 ∈ ℂ𝑛 

Skalarprodukt für m × n-Matrizen 
〈𝐴, 𝐵〉 = 𝑡𝑟(𝐴𝑇𝐵), 𝐴, 𝐵 ∈ ℝ𝑚×𝑛  
〈𝐴, 𝐵〉 = 𝑡𝑟(𝐴∗𝐵), 𝐴, 𝐵 ∈ ℂ𝑚×𝑛  
 
Bsp: 

𝐴 =  (
1 2 0
1 0 0

)  𝐵 = (
2 1 1
1 −1 0

)    

𝑡𝑟(𝐴𝑇𝐵) = 𝑡𝑟 ((
1 1
2 0
0 0

) ∙ (
2 1 1
1 −1 0

)) = 𝑡𝑟 (
4 0 1
4 2 2
0 0 0

) = 4 + 2 + 0 = 6  

Skalarprodukt auf L2 

〈𝑓(𝑥), 𝑔(𝑥)〉 = ∫𝑓(𝑥) ∙ 𝑔(𝑥)𝑑𝑥

1

−1

 

Bsp: 
𝑓(𝑥) = 𝑥2   𝑔(𝑥) = 𝑥 + 1  

〈𝑥2, (𝑥 + 1)〉 = ∫𝑥3 + 𝑥 𝑑𝑥

1

−1

=
𝑥4

4
+
𝑥2

2
|
1
−1

=
𝑥4 + 2𝑥2

4
|
1
−1

 

Öffnungswinkel 

𝜑 = arccos (
〈𝑣, 𝑤〉

√〈𝑣, 𝑣〉 ∙ √〈𝑤,𝑤〉
) 

Orthonormalbasen (ONB) 
Sei V ein VR mit Skalarprodukt〈. , . 〉. Eine Basis {𝑒1, . . . , 𝑒𝑛} 
heisst Orthonormalbasis, falls die Basisvektoren paarweise orthogonal zueinander sind und 
alle Norm 1 haben.  



Fourier-Reihe 
Fourier-Reihe in reeller Schreibweise 
Die Menge aller periodischen Funktion ist ein ℝ-Vektorraum: 

𝐿2([0, 𝑇]) ≔ {𝑓: [0, 𝑇] → ℝ |∫|𝑓(𝑡)|2
𝑇

0

𝑑𝑡 < ∞} 

Das Skalarprodukt in diesem Vektorraum definieren wir folgendermassen: 

〈𝑓, 𝑔〉 = ∫𝑓(𝑡) ∙ 𝑔(𝑡)𝑑𝑡

𝑇

0

 

Bezüglich diesem Skalarprodukt sind die Funktionen orthonormiert und bilden ein 
Orthonormalsystem. Damit meint man eine ONB mit dem Unterschied, dass unendliche 
Linearkombinationen nötig sind. 

𝑔0(𝑡) ≔
1

√2
      𝑔𝑛(𝑡) ≔ cos(𝑛𝜔0𝑡)    ℎ𝑛(𝑡) ≔ sin(𝑛𝜔0𝑡)    𝑛 ∈ ℕ  

 
Jede periodische Funktion lässt sich schreiben als: 

𝑓(𝑡) =
𝑎0
2
+∑(𝑎𝑛 cos(𝑛𝜔0𝑡) + 𝑏𝑛 sin(𝑛𝜔0𝑡))

∞

𝑛=1

 

 
Berechnung der Koeffizienten: 

𝑎0 =
2

𝑇
∫ 𝑓(𝑡) 𝑑𝑡
𝑇

0

 

𝑎𝑛 = 〈𝑔𝑛(𝑡), 𝑓(𝑡)〉 = ∫𝑓(𝑡) ∙ cos(𝑛𝜔0𝑡) 𝑑𝑡

𝑇

0

   𝑛 ∈ ℕ 

𝑏𝑛 = 〈ℎ𝑛(𝑡), 𝑓(𝑡)〉 = ∫𝑓(𝑡) ∙ sin(𝑛𝜔0𝑡) 𝑑𝑡

𝑇

0

   𝑛 ∈ ℕ 

Symmetrie 
𝑎0

2
 entspricht Verschiebung in y-Richtung 

Falls 𝑎𝑛 = 0 ist die Funktion punktsymmetrisch zum Ursprung (ungerade) 
Falls 𝑏𝑛 = 0 ist die Funktion symmetrisch bzgl. der y-Achse (gerade) 

Fourier-Reihe in komplexer Schreibweise 

Vektorraum: 𝐿2([0, 𝑇]) ≔ {𝑓: [0, 𝑇] → ℂ |∫ |𝑓(𝑡)|2
𝑇

0
𝑑𝑡 < ∞} 

Skalarprodukt: 〈𝑓, 𝑔〉 = ∫ 𝑓(𝑡)̅̅ ̅̅ ̅̅ ∙ 𝑔(𝑡)𝑑𝑡
𝑇

0
 

Eulersche Relationen: sin(𝑥) =
𝑒𝑖∙𝑘∙𝜔0 𝑡−𝑒−𝑖∙𝑘∙𝜔0 𝑡

2𝑖
                  cos(𝑥) =

𝑒𝑖∙𝑘∙𝜔0 𝑡+𝑒−𝑖∙𝑘∙𝜔0 𝑡

2
 

Orthonormalsystem: Basisvektor: 𝑒𝑘(𝑡) ≔ 𝑒𝑖∙𝑘∙𝜔0𝑡 , 𝑘 ∈ ℤ 
Fourierreihe komplex 

𝑓(𝑡) = ∑ 𝑐𝑘𝑒
𝑖∙𝑘∙𝜔0 𝑡

∞

𝑘=−∞

 

𝑐𝑘 = 〈𝑒𝑘  (𝑡), 𝑓(𝑡)〉𝐿2 =
1

𝑇
∫𝑓(𝑡) ∙ 𝑒−𝑖∙𝑘∙𝜔0 𝑡𝑑𝑡

𝑇

0

 , 𝑘 ∈ ℤ 

Amplituden-Phasen-Form der Fourierreihe 

𝑓(𝑡) =
𝑎0

2
+ ∑ 𝐴𝑛 cos(𝑛𝜔0𝑡 + 𝜑𝑛)

∞
𝑛=1   

sin 𝛼 = cos (𝛼 −
𝜋

2
)  

Umrechnung zwischen Darstellungsarten 

ZU↓ VON→  Reel Komplex Amplituden-Phase 

Reel  𝑎𝑛 = 2 ∙ 𝑅𝑒(𝑐𝑛)  
𝑏𝑛 = −2 ∙ 𝐼𝑚(𝑐𝑛) 

𝑎𝑛 = 𝐴𝑛cos (𝜑𝑛) 
𝑏𝑛 = −𝐴𝑛sin (𝜑𝑛) 

Komplex 
𝑐0 =

𝑎0
2
;  𝑐𝑛 =

𝑎𝑛
2
− 𝑖

𝑏𝑛
2

 

𝑐−𝑛 = 𝑐𝑛̅̅ ̅ =
𝑎𝑛
2
+ 𝑖

𝑏𝑛
2

 

 
𝑐𝑛 =

𝐴𝑛
2
sin (𝜑𝑛) 

Amplituden-
Phase 𝐴𝑛 = √𝑎𝑛

2 + 𝑏𝑛
2 

𝜑𝑛 = −sign(𝑏𝑛) ∙ cos
−1

𝑎𝑛

√𝑎𝑛
2 + 𝑏𝑛

2
 

𝐴𝑛 = 2 ∙ |𝑐𝑛| 
𝜑𝑛 = arg (𝑐𝑛) 

 

Graphische Darstellung 
𝑓(𝑡) = 1 + 4 cos(3𝜔0𝑡) + 3 cos(5𝜔0𝑡)  
lässt sich so darstellen 
  



Lineare Abbildungen und Matrizen  
Linearität 
Seien V und W zwei VR, dann ist eine Abbildung 𝑓: 𝑉 → 𝑊, 𝑣 ↦ 𝑤 = 𝑓(𝑣) linear falls gilt: 
i) 𝑓(𝑣1 + 𝑣2) = 𝑓(𝑣1) + 𝑓(𝑣2)      ∀𝑣1, 𝑣2 ∈ 𝑉 
ii) 𝑓(𝜆𝑣) = 𝜆𝑓(𝑣)     ∀𝑣 ∈ 𝑉, ∀𝜆 ∈ 𝕂 
 
i) +ii) 𝑓(𝜆1𝑣1 + 𝜆2𝑣2) = 𝜆1𝑓(𝑣1) + 𝜆2𝑓(𝑣2)      ∀𝑣1, 𝑣2 ∈ 𝑉, ∀𝜆1, 𝜆2 ∈ 𝕂 

Matrix als lineare Abbildung 
Matrizen können als Lineare Abbildungen aufgefasst werden: 
𝑓: ℝ𝑛 → ℝ𝑚  
𝑥 ↦ 𝑦 = 𝐴 ∙ 𝑥     
𝐴 ∈ ℝ𝑚×𝑛  
 
Matrizen beschreiben Streckungen, Drehungen, Spiegelungen, Projektionen, Scherungen 
und Kombinationen davon. 
Geraden werden auf Geraden abgebildet 

Drehmatrizen 
Spalten sind normiert und orthogonal 
Matrizen, die aus orthonormierten Spaltenvektoren bestehen, nennt man orthogonale 
Matrizen. 
𝑄𝑇 ∙ 𝑄 = 𝟙 ⟺ 𝑄𝑇 = 𝑄−1  

Allgemeine Drehung im Raum 

𝑛1
2(1 − cos𝜑) + cos𝜑 𝑛1𝑛2(1 − cos𝜑) − 𝑛3 sin 𝜑 𝑛1𝑛3(1 − cos𝜑) + 𝑛2 sin 𝜑

𝑛1𝑛2(1 − cos𝜑) + 𝑛3 sin𝜑 𝑛2
2(1 − cos𝜑) + cos𝜑 𝑛2𝑛3(1 − cos𝜑) − 𝑛3 sin 𝜑

𝑛1𝑛3(1 − cos𝜑) − 𝑛2 sin𝜑 𝑛2𝑛3(1 − cos𝜑) + 𝑛3 sin𝜑 𝑛3
2(1 − cos𝜑) + cos𝜑

  

 

Drehachse berechnen: 𝜑 =  cos−1 (
𝑡𝑟(𝐷)−1

2
) 

Drehachse berechnen: Löse 𝐷 ∙ 𝑥 = 𝑥 ⇒ (𝐷 − 𝟙) ∙ 𝑥 = 0 

 

Streckung (
𝑎 0
0 𝑎

)   

Projektion (
1 0 0
0 1 0

) 

 

(
1 0 0
0 1 0

)

∙ (
𝑥
𝑦
𝑧
) = (

𝑥
𝑦) 

Scherung (
1 𝑚
0 1

) 

 

(
1 𝑚
0 1

) ∙ (
𝑥
𝑦)

= (
𝑥 + 𝑚 ∙ 𝑦

𝑦
) 

Fläche bleibt 
erhalten 
𝑑𝑒𝑡(𝐴) = 1  

Drehung 
(
cos𝜑 −sin 𝜑 0
sin𝜑 cos𝜑 0
0 0 1

) 

um z-Achse 

(
1 0 0
0 cos𝜑 − sin𝜑
0 sin𝜑 cos𝜑

) 

um x-Achse 

(
cos𝜑 0 sin𝜑
0 1 0

−sin 𝜑 0 cos𝜑
) 

um y-Achse 

 

Drehung um 
Winkel 𝜑 
Fläche bleibt 
erhalten 
det(𝐴) = 1  

Spiegelung (
−1 0
0 1

) 

 

det(𝐴) = −1  

Drehspiegelung   det(𝐴) = −1  

 
 
  



Matrix einer linearen Abbildung 
Kommutatives Diagramm 
• Nehme die Basisvektoren aus BV 
• Wende die Abbildung f auf diese Basisvektoren an 
• Schreibe das Ergebnis als Koordinatenvektor bzgl. der Basis BW 
• Schreibe diese Vektoren als Spalten in die Matrix A 

 

Verkettung von linearen Abbildungen und Matrixprodukt 

Beim Verketten von mehreren linearen Abbildungen entsteht ebenfalls eine lineare 
Abbildung.  
 
Seien U, V , W drei VR und seien 𝑓 ∶  𝑈 →  𝑉 und 𝑔 ∶  𝑉 →  𝑊 zwei lineare Abbildungen. 
Dann ist die Verkettung 𝑔 ◦  𝑓 ∶ 𝑈 →  𝑊 ,    𝑢 →  𝑤 =  𝑔(𝑓 (𝑢)) ebenfalls wieder eine 
lineare Abbildung. 
 
Die zur verketten Abbildung gehörende Matrix C lässt sich durch Berechnen durch 𝐵 ∙ 𝐴 

 

Kern 
Der Kern von f ist die Menge der Vektoren v ∈ V , die von f auf den Nullvektor 0 ∈ W 
abgebildet werden 
ker(f) ist ein Unterraum von V 
Rezept: 
Löse das homogene LGS Ax = 0 
Dann gilt 𝑘𝑒𝑟(𝐴)  =  {𝑥 ∈  𝑅𝑛| 𝐴𝑥 =  0} 
dim(ker(A)) = n-r (n = # Spalten, r = # Pivots) 

Bild 
Das Bild von f ist die Menge von Vektoren w ∈ W , für die es einen Vektor v ∈ V gibt, der von 
f auf w abgebildet wird 
im(f) ist ein Unterraum von W 
Die Spalten von A spannen das Bild von A auf. 
Gauss machen, Spalten mit Pivot bilden Basis des Bildes von f. 
Das Bild ist r -dimensional, wobei r = rang(A) die Anzahl Pivotelemente ist. 
dim(im(A)) = r (r = # Pivots) 

Isomorphismen 
Umkehrabbildungen 

injektiv kein Funktionswert wird 
mehrmals angenommen 

𝑘𝑒𝑟(𝑓) = {0} 
keine freien Parameter 
#Pivots = #Spalten 

surjektiv 
jeder Wert aus dem Bildbereich 
wird mind. 
einmalangenommen 

𝑖𝑚(𝑓) = 𝑊 
#Pivots = #Zeilen 

bijektiv 1:1-Beziehung zwischen x- und 
y-Werten 

𝑑𝑒𝑡(𝐴) ≠ 0 
rang(A) = #Spalten = #Zeilen 

Wenn 𝑓: 𝑋 → 𝑌 bijektiv ist, dann existiert 𝑓−1: 𝑌 → 𝑋, sodass gilt 𝑓−1(𝑓(𝑥)) = 𝑥 

Isomorphismus 
Eine bijektive lineare Abbildung heisst Isomorphismus. 
Isomorphe VR 
Falls zwischen zwei VR ein Isomorphismus existiert, heissen die beiden VR isomorph, 
geschrieben: 𝑉 ≅ 𝑊 
Zwei VR V und W sind isomorph, wenn dim(𝑉) = dim(𝑊). Jeder reelle, endlich-
dimensionale VR V mit dim(V ) = n ist 
isomorph zum ℝ𝑛. 
  



Basiswechsel 
Matrix des Basiswechsels 

 
Matrix T aufstellen Rezept: 
T: Schreibe die Basisvektoren der alten Basis B bzgl. der Basisvektoren der neuen Basis BV ⇒ 
Spalten 
Oft einfacher (vor allem wenn alte Basis = Standardbasis) T-1 aufstellen: Schreibe die neuen 
Basisvektoren als Linearkombination der alten Basis. 
Bsp: 

𝐵 =  {1, 𝑥, 𝑥2}      𝐵̃ =  {1, 𝑥 − 1, 𝑥2 − 2𝑥 + 1} 

1 =  1 ∙ 1 +  0 ∙ 𝑥 + 0 ∙ 𝑥2 ⇒ (
1
0
0
)

𝑥 − 1 = −1 ∙ 1 +  1 ∙ 𝑥 + 0 ∙ 𝑥2 ⇒ (
−1
1
0
)

 𝑥2 − 2𝑥 + 1 =  1 ∙ 1 + (−2) ∙ 𝑥 + 1 ∙ 𝑥2 ⇒ (
1
−2
1
)
}
 
 
 
 

 
 
 
 

𝑇−1 = (
1 −1 1
0 1 −2
0 0 1

) 

 

𝐴̃ = 𝑆 ∙ 𝐴 ∙ 𝑇−1 
 
Spezialfall: 
Sei 𝑓 ∶  𝑉 →  𝑉 eine lineare Abbildung und A die Matrix von f bzgl. der “alten” Basis 𝐵𝑉 . 

Dann ist die Matrix von f bzgl. “neuer” Basis 𝐵̃𝑉 gegeben durch 𝐴̃  =  𝑇𝐴𝑇−1 wobei T die 

Matrix des Basiswechsels von 𝐵𝑉 nach 𝐵̃𝑉 ist. 
  



Eigenwerte und Eigenvektoren 
Eigenvektoren einer linearen Abbildung f sind Vektoren v , die auf Vielfaches von sich selbst 
abgebildet werden: 𝑓(𝑣) = 𝜆𝑣 
Den “Streckfaktor” λ nennt man dann Eigenwert zum Eigenvektor v . 

Eigenwerte 
Charakteristisches Polynom 
Das Polynom 𝑝𝐴(𝜆) ≔ det(𝜆 ∙ 𝟙 − 𝐴) heisst das charakteristische Polynom zur Matrix A 
Die Nullstellen des charakteristischen Polynoms sind die EW von A 

Berechne det(

𝜆 − 𝑎11 −𝑎12 −𝑎13
−𝑎21 𝜆 − 𝑎22 −𝑎23
−𝑎31 −𝑎32 𝜆−𝑎33

) = 0 

 

Spezialfall bei 2x2-Matrizen: 𝜆1, 𝜆2 =
tr(𝐴)

2
± √(

tr(𝐴)

2
)
2
− det (𝐴) 

Eigenvektoren 
Bei gegebenen Eigenwerten λ und Matrix A 
𝑥 = ker(𝜆 ∙ 𝟙 − 𝐴) 

Bsp: löse (

𝜆 − 𝑎11 −𝑎12 −𝑎13
−𝑎21 𝜆 − 𝑎22 −𝑎23
−𝑎31 −𝑎32 𝜆−𝑎33

)(

𝑥1
𝑥2
𝑥3
) = (

0
0
0
) 

Kontrolle: dim(ker(𝜆 ∙ 𝟙 − 𝐴)) ≥ 1 

Eigenraum 
Sei V ein VR und 𝑓 ∶  𝑉 →  𝑉 eine lineare Abbildung mit Matrix 𝐴 ∈  𝕂𝑛×𝑛 bzgl. einer 
beliebigen Basis. Dann heisst 
𝐸𝜆 ∶=  𝑘𝑒𝑟 (𝜆 ·  𝟙𝑛  −  𝐴)  =  {𝑥 ∈  𝕂

𝑛 ∣ 𝐴𝑥 =  𝜆𝑥} Eigenraum zum Eigenwert 𝜆 ∈  𝕂. 

Algebraische und geometrische Vielfachheit 
Algebraische Vielfachheit = Vielfachheit der Nullstelle im charakteristischen Polynom 
𝑝𝐴(𝜆) = (𝜆1 − 2)(𝜆2 − 3)

2  
𝜆1 = 2 (alg. VF 1) 
𝜆2 = 3 (alg. VF 2) 
Geometrische Vielfachheit = Dimension des entsprechenden Eigenraums 𝐸𝜆.  
Entspricht Anz. Linear unabhängiger EV im Eigenraum 𝐸𝜆. 
1 ≤ 𝐺𝑒𝑜𝑚. 𝑉𝐹 ≤ alg. VF   
 
 
 

Diagonalisieren 
Ziel: Eine Basis für einen VR finden, sodass eine Abbildung f durch eine Diagonalmatrix 
beschrieben werden kann. 
Falls die Matrix diagonalisierbar ist, besteht die Basis aus Eigenvektoren. 

Diagonalmatrix 

(

𝜆1 0 ⋯ 0
0 𝜆2 ⋮ 0
⋮ 0 ⋱ ⋮
0 ⋯ 0 𝜆𝑛

) Bei einer Diagonalmatrix stehen die Eigenwerte auf der Diagonalen. 

Diagonalisieren nach Rezept 
1. Eigenwerte berechnen 

Falls eine Matrix 𝐴 ∈ 𝕂𝑛×𝑛 n verschiedene Eigenwerte 𝜆1, … , 𝜆𝑛 ∈ 𝕂 besitzt, 
dann ist A diagonalisierbar. 

2. Eigenvektoren berechnen 
Ist geom. VF gleich alg. VF? Gibt es n linear unabhängige EV?  
Falls nein, ist die Matrix nicht diagonalisierbar. 

3. Basis von EV aufstellen 
4. Basiswechsel auf die Basis von EV 

Schreibe die n EV in die Spalten von T−1 
T erhält man durch Invertieren 

5. Diagonalmatrix aufstellen:  
EW auf der Diagonalen (mit Vielfachheit) 
Oder durch 𝐷 =  𝑇𝐴𝑇−1 berechnen 

Spezialfälle  
symmetrische Matrizen 𝐴 =  𝐴𝑇 sind immer diagonalisierbar 
Wenn A symmetrisch ist, lässt sich T als orthonormierte Matrix schreiben.  
Für diese gilt 𝑄𝑇 = 𝑄−1 
Beispiel: 

𝑇−1 = (
0 −1 2
0 2 1
1 0 0

)   

Spalten auf Länge 1 skalieren: 𝑇−1 =
1

√5
(
0 −1 2
0 2 1

√5 0 0

) 

𝑇 =
1

√5
(
0 0 √5
−1 2 0
2 1 0

) =  (𝑇−1)𝑇  

  



Potenzieren von Matrizen 

Bei Diagonalmatrizen (
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑘

)

𝑛

= (
𝜆1
𝑛 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑘

𝑛
) Diagonalelemente hoch n 

Bei diagonalisierbaren Matrizen: 𝐴𝑛 = 𝑇−1 ∙ 𝐷𝑛 ∙ 𝑇  
Anwendung: Rekursiv definierte Folgen 
𝑎𝑛+1 = 𝑎𝑛 + 𝑎𝑛−1  

(
𝑎𝑛
𝑎𝑛+1

) = (
0 1
1 1

) ∙ (
𝑎𝑛−1
𝑎𝑛

) = (
0 1
1 1

)
2

∙ (
𝑎𝑛−2
𝑎𝑛−1

) = (
0 1
1 1

)
𝑛

∙ (
𝑎0
𝑎1
)  

(
𝑎𝑛
𝑎𝑛+1

) = 𝐴𝑛 ∙ (
𝑎0
𝑎1
) = 𝑇−1 ∙ 𝐷𝑛 ∙ 𝑇 ∙ (

𝑎0
𝑎1
)  

Matrixexponential 

𝑒𝐷 = (
𝑒𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑒𝜆𝑘

)  

𝑒𝐴 = 𝑇−1 ∙ 𝑒𝐷 ∙ 𝑇  
Anwendung: Lineare DGL 
lineare, homogene ODE 1. Ordnung mit konstanten Koeffizienten 
𝑦′(𝑡) = 𝑎 ∙ 𝑦(𝑡), 𝑦(0) = 𝑦0  
Lösung: 𝑦(𝑡) = 𝑦0 ∙ 𝑒

𝑎∙𝑡   
System von DGL 
𝑌′(𝑡) =  𝐴 ∙ 𝑌(𝑡), 𝑌(0) =  𝑌0  
Lösung: 𝑌(𝑡) = 𝑒𝐴∙𝑡 ∙ 𝑌0 
Y',Y sind Vektoren, A ist eine Matrix 
 
Der Ausdruck 𝑒𝐴∙𝑡wird auch Fundamentalmatrix Φ(𝑡) genannt 
Rezept: 
DGL in Matrix-Vektor-Form aufschreiben 

{
𝑢′(𝑡) = 4 ∙ 𝑢 + 3 ∙ 𝑣

𝑣′(𝑡) = −2 ∙ 𝑢 + 𝑣
⟺ (𝑢

′

𝑣′
) = (

4 3
−2 1

) ∙ (
𝑢
𝑣
) 

𝑌 = (
𝑢
𝑣
),   𝑌′ = (

𝑢′

𝑣′
)  

Matrix A diagonalisieren 

𝐷 ∙ 𝑡 = (
𝜆1 ∙ 𝑡 0
0 𝜆2 ∙ 𝑡

)  

𝑒𝐴∙𝑡 = 𝑇−1 ∙ 𝑒𝐷∙𝑡 ∙ 𝑇 berechnen 
Lösung: 𝑌(𝑡) = Φ(𝑡) ∙ 𝑌0 = 𝑒

𝐴∙𝑡 ∙ 𝑌0 
 
 
 
 

Lineare ODE n-ter Ordnung 
Die lineare, homogene ODE n-ter Ordnung mit konstanten Koeffizienten 
𝑦𝑛(𝑥) + 𝑎𝑛−1𝑦

𝑛−1(𝑥) + . . . + 𝑎1𝑦′(𝑥)  + 𝑎0𝑦(𝑥)  =  0  
kann geschrieben werden als System 1. Ordnung in der Form 𝑌′(𝑥) =  𝐴 ∙ 𝑌(𝑥) 

(

𝑦′(𝑥)

𝑦′′(𝑥)
⋮

𝑦𝑛(𝑥)

) = (

0 1 0 0
0 ⋯ ⋱ 0
0 ⋯ 0 1
−𝑎0 −𝑎1 ⋯ −𝑎𝑛−1

) ∙ (

𝑦(𝑥)

𝑦′(𝑥)
⋮

𝑦𝑛−1(𝑥)

)  

 
Beispiel: 
lineares Anfangswertproblem 2. Ordnung: 
𝑦′′(𝑥) − 3𝑦′(𝑥) + 2𝑦(𝑥) = 0  
𝑦(0) = −1, 𝑦′(0) = 2  
𝑦′′(𝑥) = 3𝑦′(𝑥) − 2𝑦(𝑥)  

𝑌 = (
𝑦(𝑥)

𝑦′(𝑥)
),   𝑌′ = (

𝑦′(𝑥)

𝑦′′(𝑥)
) = (

0𝑦(𝑥) + 𝑦′(𝑥)

−2𝑦(𝑥) + 3𝑦′(𝑥)
) = (

0 1
−2 3

) ∙ (
𝑦(𝑥)

𝑦′(𝑥)
)  

Matrix A diagonalisieren 
𝑒𝐴∙𝑥 = 𝑇−1 ∙ 𝑒𝐷∙𝑥 ∙ 𝑇 berechnen 
Lösung: 𝑌(𝑥) = Φ(𝑥) ∙ 𝑌0 = 𝑒

𝐴∙𝑥 ∙ 𝑌0 
Falls nur 𝑦(𝑥) gefragt ist, muss von 𝑒𝐴∙𝑥 ∙ 𝑌0 nur die erste Zeile berechnet werden. 
 


