Vektorraum

VR sei eine Menge V mit Addition und einer Skalarmultiplikation
V darf durch Rechnen nicht verlassen werden.

uveEV su+v eV

VEV,AEK=>A1-v €V

Addition

i) Assoziativitdt: (u +v) +w = u+ (Y +w),Vu,v,w eV
i) ExistenzderNull: 30 eV : v+ 0=v, Vv EV

iii) Existenz des Negativen: Vv €eVI—-v eV :v+ (—v) =0
iv) Kommutativitéat: v+ w =w 4+ v,Vv,w €V

Multiplikation

v) Assoziativitdt: (1 -pu) v = A-(u-v),VALueKvevV
vi) Neutralelement der Eins: 31 €V : v-1 = y,Vv eV
Distributivgesetze:

vildl-(v+w)=2A2-v+1-w, VIEKv,WEV
viil(A4+w)-v =2 -v+u-v,VLueKvev

Unterrdume

Ein Unterraum U ist eine Teilmenge eines Vektorraums V, die selbst auch wieder ein
Vektorraum ist.

Es muss nur Gberprift werden, ob man durch Rechnen den Unterraum nicht verlasst
(Abgeschlossenheit beztiglich Addition und Skalarmultiplikation)

In einem Unterraum muss der Nullvektor vorhanden sein.

uveEU 2u+v €U

veU, AeK=A1-v el

Zusammengefasst: u,v €U, Lu e K=>A1-u+pu-v €U

Linearkombination

Sei V ein VR. Seien vy, vy, ..., v, € V beliebige Vektoren aus V und 44, 4,, ...,4, € K
beliebige Skalare. Dann nennt man den Vektor v = A;v; + A,v, + -+ + 4,0, eine
Linearkombination der Vektoren v4, vy, ..., Uy,.

Durch Linearkombinationen bildet man linear abhdngige Vektoren.

Lineare Unabhdngigkeit
Falls die Vektoren linear unabhangig sind, ist A, = 0, ..., 4, = 0 die einzige Lésung von
Alvl + et /1.,117.,1 =0

Uberpriifung:
e Vektoren in Spalten einer Matrix schreiben
e  Gauss-Algorithmus
e Maximaler Rang (Anz. Pivots r = Anzahl Spalten n) = linear unabhangig

Beispiele
Vektorraum | Vektoren Matrix
2
" ().0) G 3
P, B 2x %2 x=1 (/B 2 1
x=0 <l 0 0)
2x2 T 0 0 1\ (0 —i xzf% _g !
¢ (0 1)’(—1 0)'(1' 0) 0 1 —i
0 -1 i
1 0 0

Linearkombination berechnen bei linear abhéngigen Vektoren

Freie Variable einfiihren, beliebiger Wert (oft -1) flr freie Variable setzten, Gleichungssystem
|6sen

v+ 2v,- v3+ v, =0 v, = —2v, +v; — 31,

Lineare Hiille
Ist ein Unterraum von V. Menge aller Linearkombinationen von vy, ..., v,. Geschrieben:
span(a, b, c)

Erzeugendensystem

Die Vektoren v, v,, ..., v, € V heissen Erzeugendensystem, falls sie den ganzen Vektorraum
aufspannen: span(vq, vy, ..., vy) =V

Anders ausgedriickt: v, vy, ..., v, € V bilden ei Erzeugendensystem falls sich jeder Vektor
v € V als Linearkombination von vq, vy, ..., v, € V ausdriicken |asst:

VU EV I, .y EK: v =31 4y,



Basis

B heisst Basis von V, falls

i) B linear unabhangig ist.

ii) B ein Erzeugendensystem von V ist, d.h. span(B) = V.
Standardbasis

1 0 0
B=10],11],[0 |}ist die Standardbasis vom R3
0 0 1

B = {1, x, x?} ist eine Standardbasis vom P,

Dimension
Die Dimension eines VR ist die Anzahl Vektoren der Basis
B = {by,....,by}vonV:dim(V) = n
Basis bestimmen:
e Vektoren in Spalten einer Matrix schreiben
e  Gauss-Algorithmus
e  Spalten ohne Pivot streichen
Koordinatenvektor
Ist V ein Vektorraum und 8 = {b4,..., b,} eine Basis von V, so kann jeder Vektor v €
V eindeutig in der Form v = xy b, + - + x,b,, geschrieben werden. Der Koordinatenvektor

X1
ist dann folgender: x = < : > € K"
le
Der Koordinatenvektor ist abhdngig von der gewahlten Basis.

Norm

i) absolut homogen: |[Av|| = |A|||lv|| Vv € V,1 € K
ii) subadditiv: |[v+w|l < [lv|l + llwll Yv,w €V
i) definit: [v]l =0 =v =0

Matrixnormen

Frobenius-Norm

Zeilensummennor
m

Spaltensummennor
m

1Al 1Al
n m
Allr = _ _
I14le =mas D legl | =) el
j=1 i=1
M M| [IM|lc 1M1l4
_ ( 1 =5 _ \/|1|2 + =52 + [=3]2 + |2 = max{|1| = max{|1]
-3 2 /T~ 624 +1-5], 1=3] | +1-3], 1-51+ 2D}
+ 1213 =7

=6

Euklidische Norm p-Norm Maximums-Norm

llxll, = llxlleo = max|x;|

Einheitskreis

1 llall, lally = 111 + =2 + [3]
a={2 =12+ (-2)? + 32 =6

=14 ~ 3.74

llalle =3

Norm fiir Funktionen

Lebesque-Raum:

="Menge der p-integrierbaren Funktionen»

Definitionsmenge (beliebig)

Norm:

1
Iflle = [1f()IPdx
|

Bsp:

1
2],z = f Ix2[2dx
-1

a
a-x" = ——— xn*tl =
f n+1 n+1

1/p

1

N[

-1

a- xn+1

1
LP(—11]) =4 f: [-11] > R f|f(x)|p dx < o
51

2 1
1 1\2 2[1
— 4 — (45 — —_—
= fxdx _(5" |—1)_ 5 (

—1)_22

5




Skalarprodukt
Induzierte Norm

Jedes Skalarprodukt induziert eine Norm:

[[v]l = y{v,v)

Standardskalarprodukt:
n

(x,y) = inyi, x,y €ER"

i=1
n

(x,y)zZlei, w,z €C?
i=1

Skalarprodukt fiir m x n-Matrizen
(4,B) = tr(ATB), A,B € R"™*"
(A,B) = tr(A*B), A, B € C™*n

Bsp:

4=( o 08=(G 2 o

tr(ATB) = tr (; (1)>@ _11 (1)) =tr<i g %>=4+2+0=6
00 0 00

Skalarprodukt oruf1 L2

(), g00) = f £+ g(x)dx
1

Bsp:
fG)=x* gl =x+1
1
x* x%21 0 x*+2x%1q
2 - 3 T T =
(x%,(x+ 1)) = J-x +xdx = 4_+2 |_1 7 -1

-1

Offnungswinkel

_ (v, w)
@ = arccos <—,._(v’v> ) ,—<W'W>>

Orthonormalbasen (ONB)

Sei V ein VR mit Skalarprodukt(., . ). Eine Basis {e4, ..., e,}

heisst Orthonormalbasis, falls die Basisvektoren paarweise orthogonal zueinander sind und
alle Norm 1 haben.




Fourier-Reihe
Fourier-Reihe in reeller Schreibweise
Die Menge aller periodischen Funktion ist ein R-Vektorraum:

T
(0, 1D = 710,71 > R | [If @ de < o0

0
Das Skalarprodukt in diesem Vektorraum definieren wir folgendermassen:

T
f.9) = f F@©)- gyt
0

Beziglich diesem Skalarprodukt sind die Funktionen orthonormiert und bilden ein
Orthonormalsystem. Damit meint man eine ONB mit dem Unterschied, dass unendliche

Linearkombinationen notig sind.
go(t) = % gn(t) = cos(nwyt) hy(t) =sin(nwyt) n€N

Jede periodische Funktion lasst sich schreiben als:

f@®) = % + Z (ay cos(nwyt) + by, sin(nwgyt))

n=1
Berechnung der Koeffizienten:

2 T
ag =7f0 f()dt

T

a, =(gn(®), f(O)) = ff(t) -cos(nwot)dt n€N
OT

by = (hy(t), f(1)) = ff(t) -sin(nwyt)dt n €N
0

Symmetrie
% entspricht Verschiebung in y-Richtung

Falls a,, = 0 ist die Funktion punktsymmetrisch zum Ursprung (ungerade)
Falls b, = 0 ist die Funktion symmetrisch bzgl. der y-Achse (gerade)

Fourier-Reihe in komplexer Schreibweise
Vektorraum: L2([0,T]) = {f: [0,T]->C |f0T|f(t)|2 dt < 00}
Skalarprodukt: {f, g) = fOT f) - gt)de

ei-k-wg t_e—i-k-wg t

Eulersche Relationen: sin(x) = cos(x)

2i
Orthonormalsystem: Basisvektor: e, (t) = e!*@of k € Z

Fourierreihe komplex
(oo}

FO= ) ettt

k=—0o0

T
1 ,
= (e OOz = 7 f F(6)-e-tkootdr ke
0

Amplituden-Phasen-Form der Fourierreihe
Qo

fO=2+ Y1 A, cos(nwgt + @y)

sina = cos (a — g)

Umrechnung zwischen Darstellungsarten

ei-k-wo t+e—i-k-wg t

2

ZUl VON->

Komplex

Amplituden-Phase

Reel

Komplex
Cp=0Cph= 7"1 + l?
Amplituden- 5 2
Phase An = |an + by
. 1 an
@, = —sign(b,) ' cos™' ——=
Jaz + b2

a, =2-Re(c,)

an = AnCO.S (on)
by, = —Aysin (¢n)

Ch = TnSin (on)

45
4

Graphische Darstellung »
f@®) =1+ 4cos(Bwyt) + 3 cos(5wyt) s
|asst sich so darstellen &>
2
15
1
0.5
0 L4 -

nwg



Lineare Abbildungen und Matrizen

Linearitét

Seien V und W zwei VR, dann ist eine Abbildung f: V = W,v » w = f(v) linear falls gilt:
)fy+v) =f(w) +f(v2) Vv,v, €V

i) f(Av) = Af(v) Vv eV, VIeK

i) +il) f(Avy + A1) = 4 f () + A2f (V) Vv, v, EV,VA, A, EK
Matrix als lineare Abbildung

Matrizen kénnen als Lineare Abbildungen aufgefasst werden:

f:R" > R™

xH>y=A4-x

A € Rmxn

Matrizen beschreiben Streckungen, Drehungen, Spiegelungen, Projektionen, Scherungen
und Kombinationen davon.
Geraden werden auf Geraden abgebildet

Drehmatrizen

Spalten sind normiert und orthogonal

Matrizen, die aus orthonormierten Spaltenvektoren bestehen, nennt man orthogonale
Matrizen.

Q"-Q=1=Q =0

Allgemeine Drehung im Raum

n2(1 — cos @) + cos @ nyn,(1 —cos @) —nzsing nynz(1 —cos@) + n,sing
nyn,(1 — cos @) + nz sing nZ(1 — cos p) + cos @ nynz(1 —cos@) —nzsing
ninz(1 —cos@p) —nysing nynz(1 —cos@) + nzsing n%(1 — cos ) + cos @
Drehachse berechnen: ¢ = cos™! (@)
Drehachse berechnen: Lése D*x =x = (D —-1)-x =0

Streckung (a 0)
— 5% 100
Projektion
j G I J/ (o 1 0
,,_/ x x
o <3Z’> = (y)
Scherun 1 m Lomy (¥
g (0 1) (o 1) ' (y)
_ (x +m- y)
y
Flache bleibt
erhalten
det(A) =1
Drehung cosg —sing 0 3 Drehung um
<sin(p cos @ 0) o N Winkel ¢
0 0 1 « Flache bleibt
uT z-Acohse 0 \ erhalten
(0 cosp Sin(p) det(4) =1
0 sing cosg o e
um x-Achse
cosg 0 sing
( 0 1 0 )
—singp 0 cos¢
um y-Achse
Spiegelung (_1 0) / det(4) = -1
0 1 1
/
Drehspiegelung det(4) = -1




Matrix einer linearen Abbildung

Kommutatives Diagramm

¢ Nehme die Basisvektoren aus By

* Wende die Abbildung f auf diese Basisvektoren an

o Schreibe das Ergebnis als Koordinatenvektor bzgl. der Basis Bw
e Schreibe diese Vektoren als Spalten in die Matrix A

v f linear, W

o Js

Rmxn Rm

R" AS

Verkettung von linearen Abbildungen und Matrixprodukt
Beim Verketten von mehreren linearen Abbildungen entsteht ebenfalls eine lineare
Abbildung.

SeienU,V,WdreiVRundseienf: U - Vundg: V — W zweilineare Abbildungen.

Dann ist die Verkettungg ° f:U = W, u - w = g(f (u)) ebenfalls wieder eine
lineare Abbildung.

Die zur verketten Abbildung gehdrende Matrix C lasst sich durch Berechnen durch B - A
g°f

f linear r:\;(“]g linear

iy Jlnear, W™ = 40 = (" Nw

Bu:(H«--uUn)J’ le:{V| ---- vi} le:(Ww-u--Wm)

Ixn mmx!
x R ﬂ; ]R; BF'—‘p R"z=B-y=B-A-x
y=A-x

3

Kern

Der Kern von fist die Menge der Vektoren v € V, die von fauf den Nullvektor 0 € W
abgebildet werden

ker(f) ist ein Unterraum von V'

Rezept:

Lose das homogene LGS Ax =0

Dann gilt ker(A) = {x € Rn| Ax = 0}

dim(ker(A)) = n-r (n = # Spalten, r = # Pivots)

Bild

Das Bild von fist die Menge von Vektoren w € W, fur die es einen Vektor v € Vgibt, der von
fauf wabgebildet wird

im(f) ist ein Unterraum von W

Die Spalten von A spannen das Bild von A auf.

Gauss machen, Spalten mit Pivot bilden Basis des Bildes von f.

Das Bild ist r -dimensional, wobei r = rang(A) die Anzahl Pivotelemente ist.

dim(im(A)) = r (r = # Pivots)

Isomorphismen
Umkehrabbildungen

keine freien Parameter
#Pivots = #Spalten

kein Funktionswert wird

injektiv
mehrmals angenommen

ker(f) = {0}

jeder Wert aus dem Bildbereich #Pivots = #Zeilen
surjektiv | wird mind. im(f) =W

einmalangenommen

1:1-Beziehung zwischen x- und

bijektiv y-Werten det(A) #0

rang(A) = #Spalten = #Zeilen

Wenn f:X — Y bijektiv ist, dann existiert f ~':Y — X, sodass gilt f~*(f(x)) = x
Isomorphismus

Eine bijektive lineare Abbildung heisst Isomorphismus.

Isomorphe VR

Falls zwischen zwei VR ein Isomorphismus existiert, heissen die beiden VR isomorph,
geschrieben: V. = W

Zwei VR V und W sind isomorph, wenn dim(V) = dim(W). Jeder reelle, endlich-
dimensionale VR V mit dim(V ) = n ist

isomorph zum R™.



Basiswechsel
Matrix des Basiswechsels

id
vV Vv
id v

BVJ' lév

xR" _>T§R"X" R%=T-x

Matrix T aufstellen Rezept:

T: Schreibe die Basisvektoren der alten Basis B bzgl. der Basisvektoren der neuen Basis BV =
Spalten

Oft einfacher (vor allem wenn alte Basis = Standardbasis) T-* aufstellen: Schreibe die neuen
Basisvektoren als Linearkombination der alten Basis.

Bsp:

B={1,x,x*} B={1,x—1,x*>-2x+1}

1
1=1-1+ 0-x+0-x2:><0>
0

-1 1 -1 1
x—1=-1-1+1-x+0-x?2=>( 1 T7i={(0 1 -2

0

1
x> —-2x+1= 1-1+(—2)-x+1-x2:><—2>
1

Kn A e Km™*"

5.

f linear
Al
A mxn
AcK

Spezialfall:
Sei f : V — V eine lineare Abbildung und 4 die Matrix von fbzgl. der “alten” Basis By, .

Dann ist die Matrix von fbzgl. “neuer” Basis By gegeben durch A = TAT ! wobei T'die
Matrix des Basiswechsels von By, nach By ist.



Eigenwerte und Eigenvektoren Diagonalisieren

Eigenvektoren einer linearen Abbildung f sind Vektoren v, die auf Vielfaches von sich selbst Ziel: Eine Basis fur einen VR finden, sodass eine Abbildung f durch eine Diagonalmatrix
abgebildet werden: f(v) = Av beschrieben werden kann.
Den “Streckfaktor” A nennt man dann Eigenwert zum Eigenvektor v . Falls die Matrix diagonalisierbar ist, besteht die Basis aus Eigenvektoren.
Eigenwerte Diagonalmatrix
Charakteristisches Polynom 40 0
Das Polynom p4(4) := det(A - 1 — A) heisst das charakteristische Polynom zur Matrix A O )62 Bei einer Diagonalmatrix stehen die Eigenwerte auf der Diagonalen.
Die Nullstellen des charakteristischen Polynoms sind die EW von A O 0 /1
n

A—ayy  —ap —ai3
Berechnedet| —a;; A—ay; —ay3 |=0 _ N
—as; —as, A—ass D/agontJhSIferen nach Rezept
1. Eigenwerte berechnen
Falls eine Matrix A € K™ ™ n verschiedene Eigenwerte 14, ..., A, € K besitzt,

2
Spezialfall bei 2x2-Matrizen: 14,1, = trgA) + (tr(A)) —det (4) dann ist A diagonalisierbar.

2. Eigenvektoren berechnen
Ist geom. VF gleich alg. VF? Gibt es n linear unabhangige EV?

Eigenvektoren oY et - Y ; e
Falls nein, ist die Matrix nicht diagonalisierbar.

Bei gegebenen Eigenwerten A und Matrix A

x = ker(1-1— A) 3. Basis von EV aufstellen
A—ay;  —ag —ay3 \ /X1 0 4. Basiswechsel auf die Basis von EV
Bsp: lse ( —ay; A—day —ays ><x2> = <0> Schreibe die n EV in die Spalten von T-!
—as; —a3, A—ass/ \X3 0 T erhalt man durch Invertieren
Kontrolle: dim(ker(1 -1 — 4)) = 1 5. Diagonalmatrix aufstellen:
EW auf der Diagonalen (mit Vielfachheit)
Eigenraum Oder durch D = TAT ™! berechnen
SeiVeinVRund f: V — V eine lineare Abbildung mit Matrix A € K™ ™ bzgl. einer
beliebigen Basis. Dann heisst Spezialfdlle
Ey:= ker (A -1, — A) = {x € K" | Ax = Ax} Eigenraum zum Eigenwert 1 € K. symmetrische Matrizen A = AT sind immer diagonalisierbar
Wenn A symmetrisch ist, ldsst sich T als orthonormierte Matrix schreiben.
Algebraische und geometrische Vielfachheit Fuf di'ese git Q" = Q7"
Algebraische Vielfachheit = Vielfachheit der Nullstelle im charakteristischen Polynom Beispiel:
Pa() = (s = 2)(, = 3)? S P
Ay = 2 (alg. VF 1) 10 0
/12 =3 (alg VF 2) 0 -1 2
Geometrische Vielfachheit = Dimension des entsprechenden Eigenraums Ej. Spalten auf Linge 1 skalieren: T~1 = %( 0 2 1)
Entspricht Anz. Linear unabhdngiger EV im Eigenraum Ej. 5 V5 0 0
1 < Geom.VF < alg.VF 1 (0 0 x/§) o
T=—{-1 2 o0 ]=07)
V5 2 1 0



Potenzieren von Matrizen

Ao 0\ Ar o0
Bei Diagonalmatrizen < - > = < oo > Diagonalelemente hoch n
0 - A 0 - A7

Bei diagonalisierbaren Matrizen: A" = T~1-D"-T
Anwendung: Rekursiv definierte Folgen
Api1 = Ap + ap—g

()= C P-C)=6 G =C )
() =) =0 (2)

Matrixexponential

311 0

el=1: )

< 0 - ek
eA=T"1.e0.T
Anwendung: Lineare DGL
lineare, homogene ODE 1. Ordnung mit konstanten Koeffizienten
') =a-y(t), y(0) =y,
Losung: y(t) =y, - et
System von DGL
Y't)= A-Y(), Y(0)=Y,
Losung: Y (t) = et - Y,
Y’ Y'sind Vektoren, A ist eine Matrix

Der Ausdruck e?'twird auch Fundamentalmatrix ®(t) genannt
Rezept:
DGL in Matrix-Vektor-Form aufschreiben

u)=4-u+3-v u' _ (4 3\ (u
{V'(t) =-2-u+v hnd (y’) - (—2 1) (v)
_ u r_ u’
r=0) =)
Matrix A diagonalisieren
_ Al -t 0
D t= ( 0 /‘12 - t)
e4t =T~1.¢Pt. T berechnen
Losung: Y(t) = ®(t) - Y, = et Y,

Lineare ODE n-ter Ordnung

Die lineare, homogene ODE n-ter Ordnung mit konstanten Koeffizienten

Y + apoy" )+t @y (%) + agy(x) = 0

kann geschrieben werden als System 1. Ordnung in der Form Y'(x) = A-Y(x)

y'(x) 0 1 0 0 y(x)
y"(x) _ 0 0 . yl(x)
: 0 - 0 1 :
y"(x) —ag —ap v =apg/ \y"TH(x)

Beispiel:

lineares Anfangswertproblem 2. Ordnung:
Y'(x) = 3y'(0) + 2y(x) = 0
y(0) = -1, y'(0) = 2
y'(x) =3y’ (x) — 2y(x)
Y= (y(x)> v’ = (y’(x)> _ ( 0y(x) +y'(x) ) _ ( 0 1) _ (y(x))
y' ()’ y''(x) -2 3/ Wy'®
Matrix A diagonalisieren
e4* = T~1.eDP*. T berechnen
Losung: Y(x) = ®(x) - Y, = e4* - Y,
Falls nur y(x) gefragt ist, muss von e4™ - Y, nur die erste Zeile berechnet werden.

—2y(x) + 3y’ (x)



